language-icon Old Web
English
Sign In

Isotopes of plutonium

Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being 238Pu in 1940. Twenty plutonium radioisotopes have been characterized. The most stable are Pu-244, with a half-life of 80.8 million years, Pu-242, with a half-life of 373,300 years, and Pu-239, with a half-life of 24,110 years. All of the remaining radioactive isotopes have half-lives that are less than 7,000 years. This element also has eight meta states, though none are very stable; all meta states have half-lives of less than one second.No fission productshave a half-lifein the range of100–210 k years ...... nor beyond 15.7 M yearsLegend for superscript symbols₡  has thermal neutron capture cross section in the range of 8–50 barnsƒ  fissilem  metastable isomer№  primarily a naturally occurring radioactive material (NORM)þ  neutron poison (thermal neutron capture cross section greater than 3k barns)†  range 4–97 y: Medium-lived fission product‡  over 200,000 y: Long-lived fission product Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being 238Pu in 1940. Twenty plutonium radioisotopes have been characterized. The most stable are Pu-244, with a half-life of 80.8 million years, Pu-242, with a half-life of 373,300 years, and Pu-239, with a half-life of 24,110 years. All of the remaining radioactive isotopes have half-lives that are less than 7,000 years. This element also has eight meta states, though none are very stable; all meta states have half-lives of less than one second. The isotopes of plutonium range in atomic weight from 228.0387 u (Pu-228) to 247.074 u (Pu-247). The primary decay modes before the most stable isotope, Pu-244, are spontaneous fission and alpha emission; the initial mode after is beta emission. The primary decay products before Pu-244 are isotopes of uranium and neptunium (neglecting the wide range of daughter nuclei created by fission processes), and the primary products after are isotopes of americium. Pu-239, a fissile isotope that is the second most used nuclear fuel in nuclear reactors after U-235, and the most used fuel in the fission portion of nuclear weapons, is produced from U-238 by neutron capture followed by two beta decays. Pu-240, Pu-241, Pu-242 are produced by further neutron capture. The odd-mass isotopes Pu-239 and Pu-241 have about a 3/4 chance of undergoing fission on capture of a thermal neutron and about a 1/4 chance of retaining the neutron and becoming the following isotope. The even-mass isotopes are fertile material but not fissile and also have a lower overall probability (cross section) of neutron capture; therefore, they tend to accumulate in nuclear fuel used in a thermal reactor, the design of nearly all nuclear power plants today. In plutonium that has been used a second time in thermal reactors in MOX fuel, Pu-240 may even be the most common isotope. All plutonium isotopes and other actinides, however, are fissionable with fast neutrons. Pu-240 does have a moderate thermal neutron absorption cross section, so that Pu-241 production in a thermal reactor becomes a significant fraction as large as Pu-239 production. Pu-241 has a half-life of 14 years, and has slightly higher thermal neutron cross sections than Pu-239 for both fission and absorption. While nuclear fuel is being used in a reactor, a Pu-241 nucleus is much more likely to fission or to capture a neutron than to decay. Pu-241 accounts for a significant proportion of fissions in thermal reactor fuel that has been used for some time. However, in spent nuclear fuel that does not quickly undergo nuclear reprocessing but instead is cooled for years after use, much or most of the Pu-241 will beta decay to americium-241, one of the minor actinides, a strong alpha emitter, and difficult to use in thermal reactors. Pu-242 has a particularly low cross section for thermal neutron capture; and it takes three neutron absorptions to become another fissile isotope (either curium-245 or Pu-241) and fission. Even then, there is a chance either of those two fissile isotopes will fail to fission but instead absorb a fourth neutron, becoming curium-246 (on the way to even heavier actinides like californium, which is a neutron emitter by spontaneous fission and difficult to handle) or becoming Pu-242 again; so the mean number of neutrons absorbed before fission is even higher than 3. Therefore, Pu-242 is particularly unsuited to recycling in a thermal reactor and would be better used in a fast reactor where it can be fissioned directly. However, Pu-242's low cross section means that relatively little of it will be transmuted during one cycle in a thermal reactor. Pu-242's half-life is about 15 times as long as Pu-239's half-life; therefore it is 1/15 as radioactive and not one of the larger contributors to nuclear waste radioactivity.242Pu's gamma ray emissions are also weaker than those of the other isotopes. Pu-243 has a half-life of only 5 hours, beta decaying to americium-243. Because Pu-243 has little opportunity to capture an additional neutron before decay, the nuclear fuel cycle does not produce the extremely long-lived Pu-244 in significant quantity. Pu-238 is not normally produced in as large quantity by the nuclear fuel cycle, but some is produced from neptunium-237 by neutron capture (this reaction can also be used with purified neptunium to produce Pu-238 relatively free of other plutonium isotopes for use in radioisotope thermoelectric generators), by the (n,2n) reaction of fast neutrons on Pu-239, or by alpha decay of curium-242, which is produced by neutron capture from Am-241. It has significant thermal neutron cross section for fission, but is more likely to capture a neutron and become Pu-239. The fission cross section for 239Pu is 747.9 barns for thermal neutrons, while the activation cross section is 270.7 barns (the ratio approximates to 11 fissions for every 4 neutron captures). The higher plutonium isotopes are created when the uranium fuel is used for a long time. For high burnup used fuel, the concentrations of the higher plutonium isotopes will be higher than the low burnup fuel that is reprocessed to obtain weapons grade plutonium.

[ "Fission product yield", "MOX fuel", "Plutonium-239", "Americium" ]
Parent Topic
Child Topic
    No Parent Topic