language-icon Old Web
English
Sign In

Hardy space

In complex analysis, the Hardy spaces (or Hardy classes) Hp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz (Riesz 1923), who named them after G. H. Hardy, because of the paper (Hardy 1915). In real analysis Hardy spaces are certain spaces of distributions on the real line, which are (in the sense of distributions) boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the Lp spaces of functional analysis. For 1 ≤ p ≤ ∞ these real Hardy spaces Hp are certain subsets of Lp, while for p < 1 the Lp spaces have some undesirable properties, and the Hardy spaces are much better behaved. In complex analysis, the Hardy spaces (or Hardy classes) Hp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz (Riesz 1923), who named them after G. H. Hardy, because of the paper (Hardy 1915). In real analysis Hardy spaces are certain spaces of distributions on the real line, which are (in the sense of distributions) boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the Lp spaces of functional analysis. For 1 ≤ p ≤ ∞ these real Hardy spaces Hp are certain subsets of Lp, while for p < 1 the Lp spaces have some undesirable properties, and the Hardy spaces are much better behaved. There are also higher-dimensional generalizations, consisting of certain holomorphic functions on tube domains in the complex case, or certain spaces of distributions on Rn in the real case. Hardy spaces have a number of applications in mathematical analysis itself, as well as in control theory (such as H∞ methods) and in scattering theory. For spaces of holomorphic functions on the open unit disk, the Hardy space H2 consists of the functions f whose mean square value on the circle of radius r remains bounded as r → 1 from below. More generally, the Hardy space Hp for 0 < p < ∞ is the class of holomorphic functions f on the open unit disk satisfying This class Hp is a vector space. The number on the left side of the above inequality is the Hardy space p-norm for f, denoted by ‖ f ‖ H p . {displaystyle |f|_{H^{p}}.} It is a norm when p ≥ 1, but not when 0 < p < 1. The space H∞ is defined as the vector space of bounded holomorphic functions on the disk, with the norm For 0 < p ≤ q ≤ ∞, the class Hq is a subset of Hp, and the Hp-norm is increasing with p (it is a consequence of Hölder's inequality that the Lp-norm is increasing for probability measures, i.e. measures with total mass 1). The Hardy spaces defined in the preceding section can also be viewed as certain closed vector subspaces of the complex Lp spaces on the unit circle. This connection is provided by the following theorem (Katznelson 1976, Thm 3.8): Given f ∈ Hp, with p ≥ 0, the radial limit

[ "Operator (computer programming)", "Discrete mathematics", "Mathematical analysis", "Pure mathematics", "atomic decomposition", "adaptive fourier decomposition", "Bounded mean oscillation" ]
Parent Topic
Child Topic
    No Parent Topic