language-icon Old Web
English
Sign In

Dental composite

Dental composite resins (better referred to as 'resin-based composites' or simply 'filled resins') are types of synthetic resins that are used in dentistry as restorative material or adhesives. Dental composite resins have certain properties that will benefit patients according to the patient's cavity. It has a micro-mechanic property that makes composite more effective for filling small cavities where amalgam fillings are not as effective and could therefore fall out (due to the macro-mechanic property of amalgam). Synthetic resins evolved as restorative materials since they were insoluble, of good tooth-like appearance, insensitive to dehydration, easy to manipulate and reasonably inexpensive. Composite resins are most commonly composed of Bis-GMA and other dimethacrylate monomers (TEGMA, UDMA, HDDMA), a filler material such as silica and in most current applications, a photoinitiator. Dimethylglyoxime is also commonly added to achieve certain physical properties such as flow-ability. Further tailoring of physical properties is achieved by formulating unique concentrations of each constituent. Dental composite resins (better referred to as 'resin-based composites' or simply 'filled resins') are types of synthetic resins that are used in dentistry as restorative material or adhesives. Dental composite resins have certain properties that will benefit patients according to the patient's cavity. It has a micro-mechanic property that makes composite more effective for filling small cavities where amalgam fillings are not as effective and could therefore fall out (due to the macro-mechanic property of amalgam). Synthetic resins evolved as restorative materials since they were insoluble, of good tooth-like appearance, insensitive to dehydration, easy to manipulate and reasonably inexpensive. Composite resins are most commonly composed of Bis-GMA and other dimethacrylate monomers (TEGMA, UDMA, HDDMA), a filler material such as silica and in most current applications, a photoinitiator. Dimethylglyoxime is also commonly added to achieve certain physical properties such as flow-ability. Further tailoring of physical properties is achieved by formulating unique concentrations of each constituent. Many studies have compared the longevity of resin-based composite restorations to the longevity of silver-mercury amalgam restorations. Depending on the skill of the dentist, patient characteristics and the type and location of damage, composite restorations can have similar longevity to amalgam restorations. (See Longevity and clinical performance.) In comparison to amalgam, the appearance of resin-based composite restorations is far superior. Traditionally resin-based composites set by a chemical setting reaction through polymerization between two pastes. One paste containing an activator (not a tertiary amine, as these cause discolouration) and the other containing an initiator (benzoyl peroxide). To overcome the disadvantages of this method, such as a short working time, light-curing resin composites were introduced in the 1970s. The first light-curing units used ultra-violet light to set the material, however this method had a limited curing depth and was a high risk to patients and clinicians. Therefore, UV light-curing units were later replaced by visible light-curing systems which used Camphorquinone as a light source and overcame the issues produced by the UV light-curing units. The Traditional Period In the late 1960s, composite resins were introduced as an alternative to silicates and unfulfilled resins, which were frequently used by clinicians at the time. Composite resins displayed superior qualities, in that they had better mechanical properties than silicates and unfulfilled resins. Composite resins were also seen to be beneficial in that the resin would be presented in paste form and, with convenient pressure or bulk insertion technique, would facilitate clinical handling. The faults with composite resins at this time were that they had poor appearance, poor marginal adaptation, difficulties with polishing, difficulty with adhesion to the tooth surface, and occasionally, loss of anatomical form. The Microfilled Period In 1978, various microfilled systems were introduced into the European market. These composite resins were appealing, in that they were capable of having an extremely smooth surface when finished. These microfilled composite resins also showed a better clinical colour stability and higher resistance to wear than conventional composites, which favoured their tooth tissue-like appearance as well as clinical effectiveness. However, further research showed a progressive weakness in the material over time, leading to micro-cracks and step-like material loss around the composite margin. In 1981, microfilled composites were improved remarkably with regard to marginal retention and adaptation. It was decided, after further research, that this type of composite could be used for most restorations provided the acid etch technique was used and a bonding agent was applied. The Hybrid Period Hybrid composites were introduced in the 1980s and are more commonly known as resin-modified glass ionomer cements (RMGICs). The material consists of a powder containing a radio-opaque fluoroaluminosilicate glass and a photoactive liquid contained in a dark bottle or capsule. The material was introduced, as resin composites on their own were not suitable for Class II cavities. RMGICs can be used instead. This mixture or resin and glass ionomer allows the material to be set by light activation (resin), allowing a longer working time. It also has the benefit of the glass ionomer component releasing fluoride and has superior adhesive properties. RMGICs are now recommended over traditional GICs for basing cavities. There is a great difference between the early and new hybrid composites.

[ "Polymerization", "Composite number" ]
Parent Topic
Child Topic
    No Parent Topic