The Pleiades (/ˈplaɪ.ədiːz, ˈpliːə-/), also known as the Seven Sisters and Messier 45, are an open star cluster containing middle-aged, hot B-type stars located in the constellation of Taurus. It is among the nearest star clusters to Earth and is the cluster most obvious to the naked eye in the night sky.The name of the Pleiades comes from Ancient Greek. It probably derives from plein ('to sail') because of the cluster's importance in delimiting the sailing season in the Mediterranean Sea: 'the season of navigation began with their heliacal rising'. However, in mythology the name was used for the Pleiades, seven divine sisters, the name supposedly deriving from that of their mother Pleione and effectively meaning 'daughters of Pleione'. In reality, the name of the star cluster almost certainly came first, and Pleione was invented to explain it.The Pleiades are a prominent sight in winter in the Northern Hemisphere, and are easily visible out to mid-Southern latitudes. They have been known since antiquity to cultures all around the world, including the Celts, Hawaiians (who call them Makaliʻi), Māori (who call them Matariki), Aboriginal Australians (from several traditions), the Persians, the Arabs (who called them Thurayya), the Chinese (who called them 昴 mǎo), the Quechua, the Japanese, the Maya, the Aztec, the Sioux, the Kiowa, and the Cherokee. In Hinduism, the Pleiades are known as Krittika and are associated with the war-god Kartikeya. They are also mentioned three times in the Bible.Galileo Galilei was the first astronomer to view the Pleiades through a telescope. He thereby discovered that the cluster contains many stars too dim to be seen with the naked eye. He published his observations, including a sketch of the Pleiades showing 36 stars, in his treatise Sidereus Nuncius in March 1610.The distance to the Pleiades can be used as an important first step to calibrate the cosmic distance ladder. As the cluster is so close to the Earth, its distance is relatively easy to measure and has been estimated by many methods. Accurate knowledge of the distance allows astronomers to plot a Hertzsprung–Russell diagram for the cluster, which, when compared to those plotted for clusters whose distance is not known, allows their distances to be estimated. Other methods can then extend the distance scale from open clusters to galaxies and clusters of galaxies, and a cosmic distance ladder can be constructed. Ultimately astronomers' understanding of the age and future evolution of the universe is influenced by their knowledge of the distance to the Pleiades. Yet some authors argue that the controversy over the distance to the Pleiades discussed below is a red herring, since the cosmic distance ladder can (presently) rely on a suite of other nearby clusters where consensus exists regarding the distances as established by the Hipparcos satellite and independent means (e.g., the Hyades, Coma Berenices cluster, etc.).The cluster core radius is about 8 light-years and tidal radius is about 43 light-years. The cluster contains over 1,000 statistically confirmed members, although this figure excludes unresolved binary stars. Its light is dominated by young, hot blue stars, up to 14 of which can be seen with the naked eye depending on local observing conditions. The arrangement of the brightest stars is somewhat similar to Ursa Major and Ursa Minor. The total mass contained in the cluster is estimated to be about 800 solar masses and is dominated by fainter and redder stars.The nine brightest stars of the Pleiades are named for the Seven Sisters of Greek mythology: Sterope, Merope, Electra, Maia, Taygeta, Celaeno, and Alcyone, along with their parents Atlas and Pleione. As daughters of Atlas, the Hyades were sisters of the Pleiades. The English name of the cluster itself is of Greek origin (Πλειάδες), though of uncertain etymology. Suggested derivations include: from πλεῖν plein, 'to sail', making the Pleiades the 'sailing ones'; from πλέος pleos, 'full, many'; or from πελειάδες peleiades, 'flock of doves'. The following table gives details of the brightest stars in the cluster:Ages for star clusters can be estimated by comparing the Hertzsprung–Russell diagram for the cluster with theoretical models of stellar evolution. Using this technique, ages for the Pleiades of between 75 and 150 million years have been estimated. The wide spread in estimated ages is a result of uncertainties in stellar evolution models, which include factors such as convective overshoot, in which a convective zone within a star penetrates an otherwise non-convective zone, resulting in higher apparent ages.With larger amateur telescopes, the nebulosity around some of the stars can be easily seen; especially when long-exposure photographs are taken. Under ideal observing conditions, some hint of nebulosity around the cluster may even be seen with small telescopes or average binoculars. It is a reflection nebula, caused by dust reflecting the blue light of the hot, young stars.Analyzing deep-infrared images obtained by the Spitzer Space Telescope and Gemini North telescope, astronomers discovered that one of the cluster's stars—HD 23514, which has a mass and luminosity a bit greater than that of the Sun, is surrounded by an extraordinary number of hot dust particles. This could be evidence for planet formation around HD 23514.Coordinates: 03h 47m 24s, +24° 07′ 00″