language-icon Old Web
English
Sign In

Isomaltulose

Isomaltulose is a disaccharide carbohydrate composed of glucose and fructose. The glucose and fructose are linked by an alpha-1,6-glycosidic bond (chemical name: 6-0-α-D-glucopyranosyl-D-fructose). Isomaltulose is present in honey and sugarcane extracts. It tastes similar to sucrose (table sugar) with half the sweetness. Isomaltulose is also known by the trade name Palatinose, which is manufactured by enzymatic rearrangement (isomerization) of sucrose from beet sugar. The enzyme and its source were discovered in Germany in 1950, and since then its physiological role and physical properties have been studied extensively. Isomaltulose has been used as an alternative to sugar in foods in Japan since 1985, in the EU since 2005, in the US since 2006, and in Australia and New Zealand since 2007, besides other countries worldwide. Analytical methods for characterization and assay of commercial isomaltulose are laid down, for example, in the Food Chemicals Codex. Its physical properties closely resemble those of sucrose, making it easy to use in existing recipes and processes. Isomaltulose is a disaccharide carbohydrate composed of glucose and fructose. The glucose and fructose are linked by an alpha-1,6-glycosidic bond (chemical name: 6-0-α-D-glucopyranosyl-D-fructose). Isomaltulose is present in honey and sugarcane extracts. It tastes similar to sucrose (table sugar) with half the sweetness. Isomaltulose is also known by the trade name Palatinose, which is manufactured by enzymatic rearrangement (isomerization) of sucrose from beet sugar. The enzyme and its source were discovered in Germany in 1950, and since then its physiological role and physical properties have been studied extensively. Isomaltulose has been used as an alternative to sugar in foods in Japan since 1985, in the EU since 2005, in the US since 2006, and in Australia and New Zealand since 2007, besides other countries worldwide. Analytical methods for characterization and assay of commercial isomaltulose are laid down, for example, in the Food Chemicals Codex. Its physical properties closely resemble those of sucrose, making it easy to use in existing recipes and processes. Isomaltulose is hydrogenated to produce isomalt, a minimally digestible carbohydrate that like dietary fiber is fermented in the large intestine or colon to short-chain fatty acids. Isomalt is used as a sugar replacer, for example in sugar-free candies and confectionery. Like sucrose, isomaltulose can be digested to glucose and fructose. However, while in sucrose the glucose is linked to the anomeric carbon of the fructose (an α-1,2 linkage), in isomaltulose the linkage is to the 6 carbon (α-1,6), making isomaltulose a reducing sugar, unlike sucrose. The fructose in isomaltulose exists in a ring structure that readily opens to exhibit a carbonyl group as in ketones and aldehydes, which explains why isomaltulose is a reducing sugar. In comparison with sucrose and most other carbohydrates, isomaltulose is not a significant substrate for oral bacteria. Consequently, acid production from isomaltulose in the mouth is too slow to promote tooth decay. In nutrition, isomaltulose is a source of food energy. It provides the same amount of energy as does sucrose. The energy from both isomaltulose and sucrose is used to fuel physical, mental, physiological and metabolic activities. By way of the heat release during fueling these activities both sucrose and isomaltulose help to keep the body warm. In foods, both isomaltulose and sucrose are sweeteners. Isomalt is less sweet than sucrose.In food preparation and processing, both isomaltulose and sucrose have similar characteristics allowing recipes that use sucrose able to use isomaltulose instead or together.

[ "Sucrose", "Sucrose isomerase", "Isomaltulose synthase" ]
Parent Topic
Child Topic
    No Parent Topic