language-icon Old Web
English
Sign In

Photooxygenation

A photooxygenation is a light-induced oxidation reaction in which molecular oxygen is incorporated into the product(s). Initial research interest in photooxygenation reactions arose from Oscar Raab's observations in 1900 that the combination of light, oxygen and photosensitizers is highly toxic to cells. Early studies of photooxygenation focused on oxidative damage to DNA and amino acids, but recent research has led to the application of photooxygenation in organic synthesis and photodynamic therapy.Photooxygenation reactions are easily confused with a number of processes baring similar names (i.e. photosensitized oxidation). Clear distinctions can be made based on three attributes: oxidation, the involvement of light, and the incorporation of molecular oxygen into the products:The three types of photooxygenation reactions are distinguished by the mechanisms that they proceed through, as they are capable of yielding different or similar products depending on environmental conditions. Type I and II reactions proceed through neutral intermediates, while type III reactions proceed through charged species. The absence or presence of 1O2 is what distinguishes type I and type II reactions, respectively.All 3 types of photooxygenation have been applied in the context of organic synthesis. In particular, type II photooxygenations have proven to be the most widely used (due to the low amount of energy required to generate singlet oxygen) and have been described as 'one of the most powerful methods for the photochemical oxyfunctionalization of organic compounds.' These reactions can proceed in all common solvents and with a broad range of sensitizers.

[ "Singlet oxygen" ]
Parent Topic
Child Topic
    No Parent Topic