language-icon Old Web
English
Sign In

True polar wander

True polar wander is a solid-body rotation of a planet or moon with respect to its spin axis, causing the geographic locations of the north and south poles to change, or 'wander'. In a stable state, the largest moment of inertia axis is aligned with the spin axis, with the smaller two moments of inertia axes lying in the plane of the equator. When this is not the case, true polar wander will occur: the planet or moon will rotate as a rigid body to realign the largest moment of inertia axis with the spin axis.The mass distribution of the Earth is not spherically symmetric, and the Earth has three different moments of inertia. The axis around which the moment of inertia is greatest is closely aligned with the rotation axis (the axis going through the Geographic North and South Poles). The other two axes are near the equator. This is similar to a brick rotating around an axis going through its shortest dimension (a vertical axis when the brick is lying flat). But if the moment of inertia around one of the two axes close to the equator becomes nearly equal to that around the polar axis, then the constraint on the orientation of the object (the Earth) is relaxed.Cases of true polar wander have occurred several times in the course of the Earth's history. The speed of rotation (around the axis of lowest inertia) is thought to have been less than about 1° per million years. Mars, Europa, and Enceladus are also believed to have undergone true pole wander, in the case of Europa by 80°, flipping over almost completely.Polar wander should not be confused with precession or nutation, which is where the axis of rotation moves, in other words the North Pole points toward a different star. These are caused by the gravitational attraction of the Moon and Sun, and occurs all the time and at a much faster rate than polar wander. It does not result in changes of latitude.Paleomagnetism is used to create tectonic plate reconstructions by finding the paleolatitude of a particular site. This paleolatitude is affected both by true polar wander and by plate tectonics. To reconstruct plate tectonic histories, geologists must obtain a number of dated paleomagnetic samples. Because true polar wander is a global phenomenon but tectonic motions are specific to each plate, multiple dates allow them to separate the tectonic and true polar wander signals.

[ "Lithosphere", "Mantle (geology)", "Paleomagnetism" ]
Parent Topic
Child Topic
    No Parent Topic