language-icon Old Web
English
Sign In

Triboluminescence

Triboluminescence is an optical phenomenon in which light is generated through the breaking of chemical bonds in a material when it is pulled apart, ripped, scratched, crushed, or rubbed (see tribology). The phenomenon is not fully understood, but appears to be caused by the separation and reunification of electrical charges. The term comes from the Greek τρίβειν ('to rub'; see tribology) and the Latin lumen (light). Triboluminescence can be observed when breaking sugar crystals and peeling adhesive tapes. Triboluminescence is an optical phenomenon in which light is generated through the breaking of chemical bonds in a material when it is pulled apart, ripped, scratched, crushed, or rubbed (see tribology). The phenomenon is not fully understood, but appears to be caused by the separation and reunification of electrical charges. The term comes from the Greek τρίβειν ('to rub'; see tribology) and the Latin lumen (light). Triboluminescence can be observed when breaking sugar crystals and peeling adhesive tapes. Triboluminescence is often used as a synonym for fractoluminescence (a term sometimes used when referring only to light emitted from fractured crystals). Triboluminescence differs from piezoluminescence in that a piezoluminescent material emits light when it is deformed, as opposed to broken. These are examples of mechanoluminescence, which is luminescence resulting from any mechanical action on a solid. The Uncompahgre Ute Indians from Central Colorado are one of the first documented groups of people in the world credited with the application of mechanoluminescence involving the use of quartz crystals to generate light. The Ute constructed special ceremonial rattles made from buffalo rawhide which they filled with clear quartz crystals collected from the mountains of Colorado and Utah. When the rattles were shaken at night during ceremonies, the friction and mechanical stress of the quartz crystals impacting together produced flashes of light visible through the translucent buffalo hide. The first recorded observation is attributed to English scholar Francis Bacon when he recorded in his 1620 Novum Organum that 'It is well known that all sugar, whether candied or plain, if it be hard, will sparkle when broken or scraped in the dark.' The scientist Robert Boyle also reported on some of his work on triboluminescence in 1663. In the late 1790s, sugar production began to produce more refined sugar crystals. These crystals were formed into a large solid cone for transport and sale. This solid cone of sugar had to be broken into usable chunks using a device known as sugar nips. People began to notice that as sugar was 'nipped' in low light, tiny bursts of light were visible. A historically important instance of triboluminescence occurred in Paris in 1675. Astronomer Jean-Felix Picard observed that his barometer was glowing in the dark as he carried it. His barometer consisted of a glass tube that was partially filled with mercury. Whenever the mercury slid down the glass tube, the empty space above the mercury would glow. While investigating this phenomenon, researchers discovered that static electricity could cause low-pressure air to glow. This discovery revealed the possibility of electric lighting. Materials scientists have not yet arrived at a full understanding of the effect, but the current theory of triboluminescence — based upon crystallographic, spectroscopic, and other experimental evidence — is that upon fracture of asymmetrical materials, charge is separated. When the charges recombine, the electrical discharge ionizes the surrounding air, causing a flash of light. Research further suggests that crystals which display triboluminescence must lack symmetry (thus being anisotropic in order to permit charge separation) and be poor conductors. However, there are substances which break this rule, and which do not possess asymmetry, yet display triboluminescence anyway, such as hexakis(antipyrine)terbium iodide. It is thought that these materials contain impurities, which make the substance locally asymmetric. The biological phenomenon of triboluminescence is conditioned by recombination of free radicals during mechanical activation. A diamond may begin to glow while being rubbed. This occasionally happens to diamonds while a facet is being ground or the diamond is being sawn during the cutting process. Diamonds may fluoresce blue or red. Some other minerals, such as quartz, are triboluminescent, emitting light when rubbed together. Ordinary Pressure-sensitive tape ('Scotch tape') displays a glowing line where the end of the tape is being pulled away from the roll. In 1953, Soviet scientists observed that unpeeling a roll of tape in a vacuum produced X-rays. The mechanism of X-ray generation was studied further in 2008. Similar X-Ray emissions have also been observed with metals.

[ "Crystal", "Luminescence", "Crystalloluminescence" ]
Parent Topic
Child Topic
    No Parent Topic