language-icon Old Web
English
Sign In

Minimal change disease

Minimal change disease (also known as MCD, minimal change glomerulopathy, and nil disease, among others) is a disease affecting the kidneys which causes a nephrotic syndrome. Nephrotic syndrome leads to the loss of significant amounts of protein in the urine, which causes the widespread oedema (soft tissue swelling) and impaired kidney function commonly experienced by those affected by the disease. It is most common in children and has a peak incidence at 2 to 6 years of age. MCD is responsible for 10-25% of nephrotic syndrome cases in adults. It is also the most common cause of nephrotic syndrome of unclear cause (idiopathic) in children. Minimal change disease (also known as MCD, minimal change glomerulopathy, and nil disease, among others) is a disease affecting the kidneys which causes a nephrotic syndrome. Nephrotic syndrome leads to the loss of significant amounts of protein in the urine, which causes the widespread oedema (soft tissue swelling) and impaired kidney function commonly experienced by those affected by the disease. It is most common in children and has a peak incidence at 2 to 6 years of age. MCD is responsible for 10-25% of nephrotic syndrome cases in adults. It is also the most common cause of nephrotic syndrome of unclear cause (idiopathic) in children. The clinical signs of minimal change disease are proteinuria (abnormal excretion of proteins, mainly albumin, into the urine), edema (swelling of soft tissues as a consequence of water retention), weight gain, and hypoalbuminaemia (low serum albumin). These signs are referred to collectively as nephrotic syndrome. The first clinical sign of minimal change disease is usually edema with an associated increase in weight. The swelling may be mild but patients can present with edema in the lower half of the body, periorbital edema, swelling in the scrotal/labial area and anasarca in more severe cases. In older adults, patients may also present with acute kidney injury (20-25% of affected adults) and high blood pressure. Due to the disease process, patients with minimal change disease are also at risk of blood clots and infections. For years, pathologists found no changes when viewing kidney biopsy specimens under light microscopy, hence the name 'minimal change disease.' Sometimes, the mesangium may have expanded, but otherwise there is no injury to kidney tissue itself. Under immunofluorescence, there are no immunoglobulins or complement deposits bound to kidney tissue. With the advent of electron microscopy, the changes now known as the hallmarks of the disease were discovered. These are diffuse loss of visceral epithelial cells' foot processes (i.e., podocyte effacement), vacuolation, and growth of microvilli on the visceral epithelial cells, allowing for excess protein loss in the urine. The cause and pathogenesis of the pathology is unclear and it is currently considered idiopathic. However, it does not appear to involve complement or immune complex deposition. Rather, an altered T cell-mediated immunologic response with abnormal secretion of lymphokines by T cells is thought to modify the glomerular basement membrane, specifically the podocytes, increasing permeability. This allows the leakage of albumin and other serum proteins into the urine. Also, the exact cytokine responsible has yet to be elucidated, with IL-12, IL-18 and IL-13 having been most studied in this regard, yet never conclusively implicated. There has been discussion of B cell involvement in nephrotic syndrome, especially minimal change disease due to the success of immunotherapy that target both B and T cells, increased markers for B cell activation during a relapse of minimal change disease, and alterations in B cell sub-classes during minimal change disease remission. However, considering that there is no immunoglobulin deposition noted on renal biopsy, it may be that B cells play a more secondary role in activating the T cells that lead to disease, which would explain the effectiveness of immunosuppressants that target B cells. When albumin is excreted in the urine, its serum (blood) concentration decreases. Consequently, the plasma oncotic pressure reduces relative to the interstitial tissue. The subsequent movement of fluid from the vascular compartment to the interstitial compartment manifests as the soft tissue swelling referred to as edema. This fluid collects most commonly in the feet and legs, in response to gravity, particularly in those with poorly functioning valves. In severe cases, fluid can shift into the peritoneal cavity (abdomen) and cause ascites. As a result of the excess fluid, individuals with minimal change disease often gain weight, as they are excreting less water in the urine, and experience fatigue.

[ "Nephrotic syndrome", "Proteinuria", "Glomerulonephritis", "Renal biopsy", "Nephropathy" ]
Parent Topic
Child Topic
    No Parent Topic