language-icon Old Web
English
Sign In

Multi-channel memory architecture

In the fields of digital electronics and computer hardware, multi-channel memory architecture is a technology that increases the data transfer rate between the DRAM memory and the memory controller by adding more channels of communication between them. Theoretically this multiplies the data rate by exactly the number of channels present. Dual-channel memory employs two channels. The technique goes back as far as the 1960s having been used in IBM System/360 Model 91 and in CDC 6600.Intel Core i7:Intel Xeon:AMD Threadripper:Intel Core:Intel Xeon: In the fields of digital electronics and computer hardware, multi-channel memory architecture is a technology that increases the data transfer rate between the DRAM memory and the memory controller by adding more channels of communication between them. Theoretically this multiplies the data rate by exactly the number of channels present. Dual-channel memory employs two channels. The technique goes back as far as the 1960s having been used in IBM System/360 Model 91 and in CDC 6600. Modern high-end processors like the Intel i7 Extreme and AMD Ryzen Threadripper series, along with various Xeons support quad-channel memory. In March 2010, AMD released Socket G34 and Magny-Cours Opteron 6100 series processors with support for quad-channel memory. In 2006, Intel released chipsets that support quad-channel memory for its LGA771 platform and later in 2011 for its LGA2011 platform. Microcomputer chipsets with even more channels were designed; for example, the chipset in the AlphaStation 600 (1995) supports eight-channel memory, but the backplane of the machine limited operation to four channels. Dual-channel-enabled memory controllers in a PC system architecture use two 64-bit data channels. Dual-channel should not be confused with double data rate (DDR), in which data exchange happens twice per DRAM clock. The two technologies are independent of each other, and many motherboards use both by using DDR memory in a dual-channel configuration. Dual-channel architecture requires a dual-channel-capable motherboard and two or more DDR, DDR2, DDR3, DDR4, or DDR5 memory modules. The memory modules are installed into matching banks, which are usually color-coded on the motherboard. These separate channels allow the memory controller access to each memory module. Identical memory modules are not required, but are often recommended for best dual-channel operation. Motherboards supporting dual-channel memory layouts typically have color-coded DIMM sockets. Coloring schemes are not standardized and have opposing meanings, depending on the motherboard manufacturer's intentions and actual motherboard design. Matching colors may either indicate that the sockets belong to the same channel (meaning that DIMM pairs should be installed to differently colored sockets), or they may be used to indicate that DIMM pairs should be installed to the same color (meaning that each socket of the same color belongs to a different channel). The motherboard's manual will provide an explanation of how to install memory for that particular unit. A matched pair of memory modules may usually be placed in the first bank of each channel, and a different-capacity pair of modules in the second bank.

[ "Interleaved memory", "Memory refresh", "Memory controller", "Extended memory", "Registered memory" ]
Parent Topic
Child Topic
    No Parent Topic