language-icon Old Web
English
Sign In

Passive margin

A passive margin is the transition between oceanic and continental lithosphere that is not an active plate margin. A passive margin forms by sedimentation above an ancient rift, now marked by transitional lithosphere. Continental rifting creates new ocean basins. Eventually the continental rift forms a mid-ocean ridge and the locus of extension moves away from the continent-ocean boundary. The transition between the continental and oceanic lithosphere that was originally created by rifting is known as a passive margin. A passive margin is the transition between oceanic and continental lithosphere that is not an active plate margin. A passive margin forms by sedimentation above an ancient rift, now marked by transitional lithosphere. Continental rifting creates new ocean basins. Eventually the continental rift forms a mid-ocean ridge and the locus of extension moves away from the continent-ocean boundary. The transition between the continental and oceanic lithosphere that was originally created by rifting is known as a passive margin. Passive margins are found at every ocean and continent boundary that is not marked by a strike-slip fault or a subduction zone. Passive margins define the region around the Atlantic Ocean, Arctic Ocean, and western Indian Ocean, and define the entire coasts of Africa, Greenland, India and Australia. They are also found on the east coast of North America and South America, in western Europe and most of Antarctica. East Asia also contains some passive margins. This refers to whether a crustal boundary between oceanic lithosphere and continental lithosphere is a plate boundary or not. Active margins are found on the edge of a continent where subduction occurs. These are often marked by uplift and volcanic mountain belts on the continental plate. Less often there is a strike-slip fault, as defines the southern coastline of W. Africa. Most of the eastern Indian Ocean and nearly all of the Pacific Ocean margin are examples of active margins. While a weld between oceanic and continental lithosphere is called a passive margin, it is not an inactive margin. Active subsidence, sedimentation, growth faulting, pore fluid formation and migration are all active processes on passive margins. Passive margins are only passive in that they are not active plate boundaries. Passive margins consist of both onshore coastal plain and offshore continental shelf-slope-rise triads. Coastal plains are often dominated by fluvial processes, while the continental shelf is dominated by deltaic and longshore current processes. The great rivers (Amazon. Orinoco, Congo, Nile, Ganges, Yellow, Yangtze, and Mackenzie rivers) drain across passive margins. Extensive estuaries are common on mature passive margins. Although there are many kinds of passive margins, the morphologies of most passive margins are remarkably similar. Typically they consist of a continental shelf, continental slope, continental rise, and abyssal plain. The morphological expression of these features are largely defined by the underlying transitional crust and the sedimentation above it. Passive margins defined by a large fluvial sediment budget and those dominated by coral and other biogenous processes generally have a similar morphology. In addition, the shelf break seems to mark the maximum Neogene lowstand, defined by the glacial maxima. The outer continental shelf and slope may be cut by great submarine canyons, which mark the offshore continuation of rivers. At high latitudes and during glaciations, the nearshore morphology of passive margins may reflect glacial processes, such as the fjords of Norway and Greenland. The main features of passive margins lie underneath the external characters. Beneath passive margins the transition between the continental and oceanic crust is a broad transition known as transitional crust. The subsided continental crust is marked by normal faults that dip seaward. The faulted crust transitions into oceanic crust and may be deeply buried due to thermal subsidence and the mass of sediment that collects above it. The lithosphere beneath passive margins is known as transitional lithosphere. The lithosphere thins seaward as it transitions seaward to oceanic crust. Different kinds of transitional crust form, depending on how fast rifting occurs and how hot the underlying mantle was at the time of rifting. Volcanic passive margins represent one endmember transitional crust type, the other endmember (amagmatic) type is the rifted passive margin. Volcanic passive margins also are marked by numerous dykes and igneous intrusions within the subsided continental crust. There are typically a lot of dykes formed perpendicular to the seaward-dipping lava flows and sills. Igneous intrusions within the crust cause lava flows along the top of the subsided continental crust and form seaward-dipping reflectors. Passive margins are characterized by thick accumulations of sediments. Space for these sediments is called accommodation and is due to subsidence of especially the transitional crust. Subsidence is ultimately caused by gravitational equilibrium that is established between the crustal tracts, known as isostasy. Isostasy controls the uplift of the rift flank and the subsequent subsidence of the evolving passive margin and is mostly reflected by changes in heat flow. Heat flow at passive margins changes significantly over its lifespan, high at the beginning and decreasing with age. In the initial stage, the continental crust and lithosphere is stretched and thinned due to plate movement (plate tectonics) and associated igneous activity. The very thin lithosphere beneath the rift allows the upwelling mantle to melt by decompression. Lithospheric thinning also allows the asthenosphere to rise closer to the surface, heating the overlying lithosphere by conduction and advection of heat by intrusive dykes. Heating reduces the density of the lithosphere and elevates the lower crust and lithosphere. In addition, mantle plumes may heat the lithosphere and cause prodigious igneous activity. Once a mid-oceanic ridge forms and seafoor spreading begins, the original site of rifting is separated into conjugate passive margins (for example, the eastern US and NW African margins were parts of the same rift in early Mesozoic time and are now conjugate margins) and migrates away from the zone of mantle upwelling and heating and cooling begins. The mantle lithosphere below the thinned and faulted continental oceanic transition cools, thickens, increases in density and thus begins to subside. The accumulation of sediments above the subsiding transitional crust and lithosphere further depresses the transitional crust.

[ "Sedimentary rock", "Rift", "Continental margin", "Volcanic passive margin" ]
Parent Topic
Child Topic
    No Parent Topic