language-icon Old Web
English
Sign In

Tumor antigen vaccine

According to the National Cancer Institute, a tumor antigen vaccine is a 'vaccine made of cancer cells, parts of cancer cells, or pure tumor antigens (substances isolated from tumor cells)'. A tumor antigen vaccine may stimulate the body's immune system to find and kill cancer cells. As such, tumor antigen vaccines are a type of cancer immunotherapy. According to the National Cancer Institute, a tumor antigen vaccine is a 'vaccine made of cancer cells, parts of cancer cells, or pure tumor antigens (substances isolated from tumor cells)'. A tumor antigen vaccine may stimulate the body's immune system to find and kill cancer cells. As such, tumor antigen vaccines are a type of cancer immunotherapy. Tumor antigen vaccines work the same way that viral vaccines work, by training the immune system to attack cells that contain the antigens in the vaccine. The difference is that the antigens for viral vaccines are derived from viruses or cells infected with virus, while the antigens for tumor antigen vaccines are derived from cancer cells. Since tumor antigens are antigens found in cancer cells but not normal cells, vaccinations containing tumor antigens should train the immune system to target cancer cells not healthy cells. Cancer-specific tumor antigens include peptides from proteins that are not typically found in normal cells but are activated in cancer cells or peptides containing cancer-specific mutations. Antigen-presenting cells (APCs) such as dendritic cells take up antigens from the vaccine, process them into epitopes, and present the epitopes to T-cells via Major Histocompatibility Complex proteins. If T-cells recognize the epitope as foreign, the adaptive immune system is activated and target cells that express the antigens. Cancer vaccines can be cell-based, protein- or peptide-based, or gene-based (DNA/RNA). Cell-based vaccines include tumor cells or tumor cell lysates. Tumor cells from the patient are predicted to contain the greatest spectrum of relevant antigens, but this approach is expensive and often requires too many tumor cells from the patient to be effective. Using a combination of established cancer cell lines that resemble the patient’s tumor can overcome these barriers, but this approach has yet to be effective. Canvaxin, which incorporates three melanoma cell lines, failed phase III clinical trials. Another cell-based vaccine strategy involves autologous dendritic cells (dendritic cells derived from the patient) to which tumor antigens are added. In this strategy, the antigen-presenting dendritic cells directly stimulate T-cells rather than relying on processing of the antigens by native APCs after the vaccine is delivered. The best known dendritic cell vaccine is Sipuleucel-T (Provenge), which only improved survival by four months. The efficacy of dendritic cell vaccines may be limited due to difficulty in getting the cells to migrate to lymph nodes and interact with T-cells. Peptide-based vaccines usually consist of cancer specific-epitopes and often require an adjuvant (for example, GM-CSF) to stimulate the immune system and enhance antigenicity. Examples of these epitopes include Her2 peptides, such as GP2 and NeuVax. However, this approach requires MHC profiling of the patient because of MHC restriction. The need for MHC profile selection can be overcome by using longer peptides (“synthetic long peptides”) or purified protein, which are then processed into epitopes by APCs. Gene-based vaccines are composed of the nucleic acid (DNA/RNA) encoding for the gene. The gene is then expressed in APCs and the resulting protein product is processed into epitopes. Delivery of the gene is particularly challenging for this type of vaccine. Viral vaccines usually work by preventing the spread of the virus. Similarly, cancer vaccines can be designed to target common antigens before cancer evolves if an individual has appropriate risk factors. Additional preventive applications include preventing the cancer from evolving further or undergoing metastasis and preventing relapse after remission. Therapeutic vaccines focus on killing existing tumors. While cancer vaccines have generally been demonstrated to be safe, their efficacy still needs improvement. One way to potentially improve vaccine therapy is by combining the vaccine with other types of immunotherapy aimed at stimulating the immune system. Since tumors often evolve mechanisms to suppress the immune system, immune checkpoint blockade has recently received a lot of attention as a potential treatment to be combined with vaccines. For therapeutic vaccines, combined therapies can be more aggressive, but greater care to ensure the safety of relatively healthy patients is needed for combinations involving preventive vaccines.

[ "Immunotherapy", "Tumor antigen", "Recombinant DNA", "CD8" ]
Parent Topic
Child Topic
    No Parent Topic