A polar mount is a movable mount for satellite dishes that allows the dish to be pointed at many geostationary satellites by slewing around one axis. It works by having its slewing axis parallel, or almost parallel, to the Earth's polar axis so that the attached dish can follow, approximately, the geostationary orbit, which lies in the plane of the Earth's equator. A polar mount is a movable mount for satellite dishes that allows the dish to be pointed at many geostationary satellites by slewing around one axis. It works by having its slewing axis parallel, or almost parallel, to the Earth's polar axis so that the attached dish can follow, approximately, the geostationary orbit, which lies in the plane of the Earth's equator. Polar mounts are popular with home television receive-only (TVRO) satellite systems where they can be used to access the TV signals from many different geostationary satellites. They are also used in other types of installations such as TV, cable, and telecommunication Earth stations although those applications usually use more sophisticated altazimuth or fix angle dedicated mounts. Polar mounts can use a simplified one axis design because geostationary satellite are fixed in the sky relative to the observing dish and their equatorial orbits puts them all in a common line that can be accessed by swinging the satellite dish along a single arc approximately 90 degrees from the mount's polar axis. This also allows them to use a single positioner to move the antenna in the form of a 'jackscrew' or horizon-to-horizon gear drive. Polar mounts work in a similar way to astronomical equatorial mounts in that they point at objects at fixed hour angles that follow the astronomical right ascension axis. Like equatorial mounts, polar mounts require polar alignment. They differ from equatorial mounts in that the objects (satellites) they point at are fixed in position and usually require no tracking, just accurate fixed aiming. When observed from the equator, geostationary satellites follow exactly the imaginary line of the Earth's equatorial plane on the celestial sphere (i.e. they follow the celestial equator). But when observed from other latitudes the fact that geostationary satellites are at a fixed altitude of 35,786 km (22,236 mi) above the Earth's equator, and vary in distance from the satellite dish due to the dish's position in latitude and longitude, means polar mounts need further adjustments to allow one axis slewing: