language-icon Old Web
English
Sign In

Weather front

A weather front is a boundary separating two masses of air of different densities, and is the principal cause of meteorological phenomena outside the tropics. In surface weather analyses, fronts are depicted using various colored triangles and half-circles, depending on the type of front. The air masses separated by a front usually differ in temperature and humidity. A weather front is a boundary separating two masses of air of different densities, and is the principal cause of meteorological phenomena outside the tropics. In surface weather analyses, fronts are depicted using various colored triangles and half-circles, depending on the type of front. The air masses separated by a front usually differ in temperature and humidity. Cold fronts may feature narrow bands of thunderstorms and severe weather, and may on occasion be preceded by squall lines or dry lines. Warm fronts are usually preceded by stratiform precipitation and fog. The weather usually clears quickly after a front's passage. Some fronts produce no precipitation and little cloudiness, although there is invariably a wind shift. Cold fronts and occluded fronts generally move from west to east, while warm fronts move poleward. Because of the greater density of air in their wake, cold fronts and cold occlusions move faster than warm fronts and warm occlusions. Mountains and warm bodies of water can slow the movement of fronts. When a front becomes stationary—and the density contrast across the frontal boundary vanishes—the front can degenerate into a line which separates regions of differing wind velocity, known as a shearline. This is most common over the open ocean. The Bergeron classification is the most widely accepted form of air mass classification. Air mass classifications are indicated by three letters. The first letter describes its moisture properties, with c used for continental air masses (dry) and m for maritime air masses (moist). The second letter describes the thermal characteristic of its source region: T for tropical, P for polar, A for arctic or Antarctic, M for monsoon, E for equatorial, and S for superior air (dry air formed by significant upward motion in the atmosphere). The third letter designates the stability of the atmosphere. If the air mass is colder than the ground below it, it is labeled k. If the air mass is warmer than the ground below it, it is labeled w. Fronts separate air masses of different types or origins, and are located along troughs of lower pressure. A surface weather analysis is a special type of weather map which provides a view of weather elements over a geographical area at a specified time based on information from ground-based weather stations. Weather maps are created by plotting or tracing the values of relevant quantities such as sea-level pressure, temperature, and cloud cover onto a geographical map to help find synoptic scale features such as weather fronts. Surface weather analyses have special symbols which show frontal systems, cloud cover, precipitation, or other important information. For example, an H may represent high pressure, implying fair weather. An L on the other hand may represent low pressure, which frequently accompanies precipitation. Low pressure also creates surface winds deriving from high pressure zones. Various symbols are used not just for frontal zones and other surface boundaries on weather maps, but also to depict the present weather at various locations on the weather map. In addition, areas of precipitation help determine the frontal type and location. There are two different meanings used within meteorology to describe weather around a frontal zone. The term 'anafront' describes boundaries which show instability, meaning air rises rapidly along and over the boundary to cause significant weather changes. A 'katafront' is weaker, bringing smaller changes in temperature and moisture, as well as limited rainfall. A cold front is located at the leading edge of the temperature drop off, which in an isotherm analysis shows up as the leading edge of the isotherm gradient, and it normally lies within a sharp surface trough. Cold fronts often bring heavy thunderstorms, rain, and hail. Cold fronts can produce sharper changes in weather and move up to twice as quickly as warm fronts, since cold air is denser than warm air and rapidly replaces the warm air preceding the boundary. On weather maps, the surface position of the cold front is marked with the symbol of a blue line of triangle-shaped pips pointing in the direction of travel, and it is placed at the leading edge of the cooler air mass. Cold fronts come in association with a low-pressure area. The concept of colder, dense air 'wedging' under the less dense warmer air is often used to depict how air is lifted along a frontal boundary. The cold air wedging underneath warmer air creates the strongest winds just above the ground surface, a phenomenon often associated with property-damaging wind gusts. This lift would then form a narrow line of showers and thunderstorms if enough moisture were present. However, this concept isn't an accurate description of the physical processes; upward motion is not produced because of warm air 'ramping up' cold, dense air, rather, frontogenetical circulation is behind the upward forcing. Warm fronts are at the leading edge of a homogeneous warm air mass, which is located on the equatorward edge of the gradient in isotherms, and lie within broader troughs of low pressure than cold fronts. A warm front moves more slowly than the cold front which usually follows because cold air is denser and harder to remove from the Earth's surface. This also forces temperature differences across warm fronts to be broader in scale. Clouds ahead of the warm front are mostly stratiform, and rainfall gradually increases as the front approaches. Fog can also occur preceding a warm frontal passage. Clearing and warming is usually rapid after frontal passage. If the warm air mass is unstable, thunderstorms may be embedded among the stratiform clouds ahead of the front, and after frontal passage thundershowers may continue. On weather maps, the surface location of a warm front is marked with a red line of semicircles pointing in the direction of travel.

[ "Cold front", "Precipitation" ]
Parent Topic
Child Topic
    No Parent Topic