language-icon Old Web
English
Sign In

Pattern recognition (psychology)

In psychology and cognitive neuroscience, pattern recognition describes a cognitive process that matches information from a stimulus with information retrieved from memory. In psychology and cognitive neuroscience, pattern recognition describes a cognitive process that matches information from a stimulus with information retrieved from memory. Pattern recognition occurs when information from the environment is received and entered into short-term memory, causing automatic activation of a specific content of long-term memory. An early example of this is learning the alphabet in order. When a carer repeats ‘A, B, C’ multiple times to a child, utilizing the pattern recognition, the child says ‘C’ after he/she hears ‘A, B’ in order. Recognizing patterns allow us to predict and expect what is coming. The process of pattern recognition involves matching the information received with the information already stored in the brain. Making the connection between memories and information perceived is a step of pattern recognition called identification. Pattern recognition requires repetition of experience. Semantic memory, which is used implicitly and subconsciously is the main type of memory involved with recognition. Pattern recognition is not only crucial to humans, but to other animals as well. Even koalas, who possess less-developed thinking abilities, use pattern recognition to find and consume eucalyptus leaves. The human brain has developed more, but holds similarities to the brains of birds and lower mammals. The development of neural networks in the outer layer of the brain in humans has allowed for better processing of visual and auditory patterns. Spatial positioning in the environment, remembering findings, and detecting hazards and resources to increase chances of survival are examples of the application of pattern recognition for humans and animals. There are six main theories of pattern recognition: template matching, prototype-matching, feature analysis, recognition-by-components theory, bottom-up and top-down processing, and Fourier analysis. The application of these theories in everyday life is not mutually exclusive. Pattern recognition allows us to read words, understand language, recognize friends, and even appreciate music. Each of the theories applies to various activities and domains where pattern recognition is observed. Facial, music and language recognition, and seriation are a few of such domains. Facial recognition and seriation occur through encoding visual patterns, while music and language recognition use the encoding of auditory patterns. Template matching theory describes the most basic approach to human pattern recognition. It is a theory that assumes every perceived object is stored as a 'template' into long-term memory. Incoming information is compared to these templates to find an exact match. In other words, all sensory input is compared to multiple representations of an object to form one single conceptual understanding. The theory defines perception as a fundamentally recognition-based process. It assumes that everything we see, we understand only through past exposure, which then informs our future perception of the external world. For example, A, A, and A are all recognized as the letter A, but not B. This viewpoint is limited, however, in explaining how new experiences can be understood without being compared to an internal memory template. Unlike the exact, one-to-one, template matching theory, prototype matching instead compares incoming sensory input to one average prototype. This theory proposes that exposure to a series of related stimuli leads to the creation of a 'typical' prototype based on their shared features. It reduces the number of stored templates by standardizing them into a single representation. The prototype supports perceptual flexibility, because unlike in template matching, it allows for variability in the recognition of novel stimuli. For instance, if a child had never seen a lawn chair before, they would still be able to recognize it as a chair because of their understanding of its essential characteristics as having four legs and a seat. This idea, however, limits the conceptualization of objects that cannot necessarily be 'averaged' into one, like types of canines, for instance. Even though dogs, wolves, and foxes are all typically furry, four-legged, moderately sized animals with ears and a tail, they are not all the same, and thus cannot be strictly perceived with respect to the prototype matching theory. Multiple theories try to explain how humans are able to recognize patterns in their environment. Feature detection theory proposes that the nervous system sorts and filters incoming stimuli to allow the human (or animal) to make sense of the information. In the organism, this system is made up of feature detectors, which are individual neurons, or groups of neurons, that encode specific perceptual features. The theory proposes an increasing complexity in the relationship between detectors and the perceptual feature. The most basic feature detectors respond to simple properties of the stimuli. Further along the perceptual pathway, higher organized feature detectors are able to respond to more complex and specific stimuli properties. When features repeat or occur in a meaningful sequence, we are able to identify these patterns because of our feature detection system. Template and feature analysis approaches to recognition of objects (and situations) have been merged / reconciled / overtaken by multiple discrimination theory. This states that the amounts in a test stimulus of each salient feature of a template are recognized in any perceptual judgment as being at a distance in the universal unit of 50% discrimination (the objective performance 'JND') from the amount of that feature in the template. Similar to feature detection theory, recognition by components (RBC) focuses on the bottom-up features of the stimuli being processed. First proposed by Irving Biederman (1987), this theory states that humans recognize objects by breaking them down into their basic 3D geometric shapes called geons (i.e. cylinders, cubes, cones, etc.). An example is how we break down a common item like a coffee cup: we recognize the hollow cylinder that holds the liquid and a curved handle off the side that allows us to hold it. Even though not every coffee cup is exactly the same, these basic components helps us to recognize the consistency across examples (or pattern). RBC suggests that there are fewer than 36 unique geons that when combined can form a virtually unlimited number of objects. To parse and dissect an object, RBC proposes we attend to two specific features: edges and concavities. Edges enable the observer to maintain a consistent representation of the object regardless of the viewing angle and lighting conditions. Concavities are where two edges meet and enable the observer to perceive where one geon ends and another begins.

[ "Algorithm", "Computer vision", "Artificial intelligence", "Pattern recognition", "Cognitive psychology", "Memory-prediction framework", "Syntactic methods", "Syntactic pattern recognition", "Computer pattern recognition", "Tactile Pattern Recognition" ]
Parent Topic
Child Topic
    No Parent Topic