language-icon Old Web
English
Sign In

't Hooft–Polyakov monopole

In theoretical physics, the 't Hooft–Polyakov monopole is a topological soliton similar to the Dirac monopole but without any singularities. It arises in the case of a Yang–Mills theory with a gauge group G, coupled to a Higgs field which spontaneously breaks it down to a smaller group H via the Higgs mechanism. It was first found independently by Gerard 't Hooft and Alexander Polyakov. In theoretical physics, the 't Hooft–Polyakov monopole is a topological soliton similar to the Dirac monopole but without any singularities. It arises in the case of a Yang–Mills theory with a gauge group G, coupled to a Higgs field which spontaneously breaks it down to a smaller group H via the Higgs mechanism. It was first found independently by Gerard 't Hooft and Alexander Polyakov. Unlike the Dirac monopole, the 't Hooft–Polyakov monopole is a smooth solution with a finite total energy. The solution is localized around r = 0 {displaystyle r=0} . Very far from the origin, the gauge group G is broken to H, and the 't Hooft–Polyakov monopole reduces to the Dirac monopole. However, at the origin itself, the G gauge symmetry is unbroken and the solution is non-singular also near the origin. The Higgs field

[ "Quantum field theory", "Magnetic monopole", "Gauge theory" ]
Parent Topic
Child Topic
    No Parent Topic