language-icon Old Web
English
Sign In

Hunter syndrome

Hunter syndrome, or mucopolysaccharidosis type II (MPS II), is a rare genetic disorder in which large sugar molecules called glycosaminoglycans (AKA GAGs, or mucopolysaccharides) build up in body tissues. It is a form of lysosomal storage disease. Hunter Syndrome is caused by a deficiency of the lysosomal enzyme iduronate-2-sulfatase (I2S). The lack of this enzyme causes heparan sulfate and dermatan sulfate to accumulate in all body tissues. Hunter syndrome is the only MPS syndrome to exhibit X-linked recessive inheritance. Hunter syndrome, or mucopolysaccharidosis type II (MPS II), is a rare genetic disorder in which large sugar molecules called glycosaminoglycans (AKA GAGs, or mucopolysaccharides) build up in body tissues. It is a form of lysosomal storage disease. Hunter Syndrome is caused by a deficiency of the lysosomal enzyme iduronate-2-sulfatase (I2S). The lack of this enzyme causes heparan sulfate and dermatan sulfate to accumulate in all body tissues. Hunter syndrome is the only MPS syndrome to exhibit X-linked recessive inheritance. The symptoms of Hunter syndrome are comparable to those of MPS I. Hunter syndrome causes abnormalities in many organs, including the skeleton, heart, and respiratory system. In severe cases, this leads to death during the teenage years. Unlike MPS I, corneal clouding is not associated with this disease. Hunter syndrome may present with a wide variety of phenotypes. Hunter syndrome has traditionally been categorized as either 'mild' or 'severe' depending on the presence of central nervous system symptoms. However, this is an oversimplification. Patients with 'attenuated' or 'mild' forms of the disease may still suffer from significant health issues. For severely affected patients, the clinical course is relatively predictable; patients will normally die at an early age. For those with milder forms of the disease, there is a wider variety of outcomes. Many live into their 20s and 30s, but some may have near-normal life expectancies and may even have children. Cardiac and respiratory abnormalities are the usual cause of death for patients with milder forms of the disease. The symptoms of Hunter syndrome (MPS II) are generally not apparent at birth. Often, the first symptoms may include abdominal hernias, ear infections, runny noses, and colds. As the buildup of GAGs continues throughout the cells of the body, signs of Hunter syndrome become more visible. Physical appearances of many children with Hunter syndrome include a distinctive coarseness in their facial features, including a prominent forehead, a nose with a flattened bridge, and an enlarged tongue. They may also have a large head, as well as an enlarged abdomen. For severe cases of MPS II, a diagnosis is often made between the ages of 18 and 36 months. In milder cases, patients present similarly to children with Hurler–Scheie syndrome, and a diagnosis is usually made between the ages of 4 and 8 years. The continued storage of GAGs leads to abnormalities in multiple organ systems. After 18 months, children with severe MPS II may suffer from developmental decline and progressive loss of skills. The thickening of the heart valves and walls of the heart can result in progressive decline in cardiac function. The walls of the airway may become thickened, as well, leading to obstructive airway disease. As the liver and spleen grow larger with time, the abdomen may become distended, making hernias more noticeable. All major joints may be affected by Hunter syndrome, leading to joint stiffness and limited motion. Progressive involvement of the finger and thumb joints results in decreased ability to pick up small objects. The effects on other joints, such as hips and knees, can make walking normally increasingly difficult. If carpal tunnel syndrome develops, a further decrease in hand function can occur. The bones themselves may be affected, resulting in short stature. In addition, pebbly, ivory-colored skin lesions may be found on the upper arms, legs, and upper back of some people with Hunter syndrome. These skin lesions are considered pathognomic for the disease. Finally, the storage of GAGs in the brain can lead to delayed development with subsequent mental retardation and progressive loss of function. The age at onset of symptoms and the presence/absence of behavioral disturbances are predictive factors of ultimate disease severity in very young patients. Behavioral disturbances can often mimic combinations of symptoms of attention deficit hyperactivity disorder, autism, obsessive compulsive disorder, and/or sensory processing disorder, although the existence and level of symptoms differ in each affected child. They often also include a lack of an appropriate sense of danger, and aggression. The behavioral symptoms of Hunter syndrome generally precede neurodegeneration and often increase in severity until the mental handicaps become more pronounced. By the time of death, most children with severe MPS II have severe mental disabilities and are completely dependent on their caretakers. Since Hunter syndrome is an X-linked recessive disorder, it preferentially affects male patients. The IDS gene is located on the X chromosome. The IDS gene encodes for an enzyme called iduronate-2-sulfatase (I2S). A lack of this enzyme leads to a buildup of GAGs, which cause the symptoms of Hunter syndrome. Females generally have two X chromosomes, whereas males generally have one X chromosome that they inherit from their mother and one Y chromosome that they inherit from their father. If a female inherits one copy of the mutant allele for MPS II, she will usually have a normal copy of the IDS gene which can compensate for the mutant allele. This is known as being a genetic carrier. However, a male who inherits a defective X chromosome usually does not have another X chromosome to compensate for the mutant gene. Thus, a female would need to inherit two mutant genes in order to develop Hunter Syndrome, while a male patient only needs to inherit one mutant gene. However, it is possible for a female carrier to be affected due to X-inactivation, which is a random process. The human body depends on a vast array of biochemical reactions to support critical functions. One of these functions is the breakdown of large biomolecules. The failure of this process is the underlying problem in Hunter syndrome and related storage disorders.

[ "Glycosaminoglycan", "Diabetes mellitus", "Disease", "Gene", "Enzyme", "Idursulfase", "Iduronate sulphatase", "Iduronate sulfatase deficiency", "Hunter disease", "Mucopolysaccharidosis type II" ]
Parent Topic
Child Topic
    No Parent Topic