language-icon Old Web
English
Sign In

Hydrostatic skeleton

A hydrostatic skeleton, or hydroskeleton, is a flexible skeleton supported by fluid pressure. Hydrostatic skeletons are common among simple invertebrate organisms. While more advanced organisms can be considered hydrostatic, they are sometimes referred to as hydrostatic for their possession of a hydrostatic organ instead of a hydrostatic skeleton. A hydrostatic organ and a hydrostatic skeleton may have the same capabilities, but they are not the same. Hydrostatic organs are more common in advanced organisms, while hydrostatic skeletons are more common in primitive organisms. As its name suggests, containing hydro meaning 'water', being hydrostatic means that the skeleton or organ is fluid-filled. A hydrostatic skeleton, or hydroskeleton, is a flexible skeleton supported by fluid pressure. Hydrostatic skeletons are common among simple invertebrate organisms. While more advanced organisms can be considered hydrostatic, they are sometimes referred to as hydrostatic for their possession of a hydrostatic organ instead of a hydrostatic skeleton. A hydrostatic organ and a hydrostatic skeleton may have the same capabilities, but they are not the same. Hydrostatic organs are more common in advanced organisms, while hydrostatic skeletons are more common in primitive organisms. As its name suggests, containing hydro meaning 'water', being hydrostatic means that the skeleton or organ is fluid-filled. As a skeletal structure, it possesses the ability to affect shape and movement, and involves two mechanical units: the muscle layers and the body wall. The muscular layers are longitudinal and circular, and part of the fluid-filled coelom within. Contractions of the circular muscles lengthen the organism’s body, while contractions of the longitudinal muscles shorten the organism’s body. Fluid within the organism is evenly concentrated so the forces of the muscle are spread throughout the whole organism and shape changes can persist. These structural factors also persist in a hydrostatic organ. A non-helical hydrostatic skeleton structure is the functional basis of the mammalian penis. Helically reinforced hydrostatic skeleton structure is typical for flexible structures as in soft-bodied animals. Hydrostatic skeletons are typically arranged in a cylinder. Hydrostatic skeletons can be controlled by several different muscle types. Length can be adjusted by longitudinal muscle fibers parallel to the longitudinal axis. The muscle fibers may be found in continuous sheets or isolated bundles, and the diameter can be manipulated by three different muscle types: circular, radial, and transverse. Circular musculature wraps around the circumference of the cylinder, radial musculature extends from the center of the cylinder towards the surface, and transverse musculature arrange in parallel and perpendicular sheets crossing the diameter of the cylinder. Within the cylinder lies fluid, most often water. The fluid is resistant to changes in volume. Contraction of circular, radial or transverse muscles increases the pressure within the cylinder, and results in an increase in length. Contraction of longitudinal muscles can shorten the cylinder. Change in shape is limited by connective tissue fibers. Connective fibers, often collagenous, are arranged in a helical shape within the wall of the hydrostatic skeleton. The helical shape formed by these fibers allows for elongation and shortening of the skeleton, while still remaining rigid to prevent torsion. As the shape of the cylinder changes, the pitch of the helix will change. The angle relative to the long axis will decrease during elongation and increase during shortening. Organisms containing a hydrostatic skeleton have advantages and disadvantages. Their fluid shape allows them to move around easily while swimming and burrowing. They can fit through oddly shaped passages and hide themselves more effectively from predators. They are able to create a force when squeezing through rocks and create a “prying open” gesture. There is a lightweight, flexible component to them that allows this movement with very little muscle mass. These organisms are also able to heal faster than organisms that contain hard skeletons. Healing in these organisms varies from creature to creature. However, if the cavity needs to be refilled, the “fluid” can easily be refilled if it is water or blood. If the fluid is some other type of liquid, it can take longer, but it is still faster than healing a bone. The common earthworm is also able to regrow damaged parts of their body. These organisms have some relatively simple pathways for circulation and respiration. Also, these organisms have a cushion to allow protection for internal organs from shock. However, it does not protect internal organs from external damage very effectively.

[ "Ecology", "Anatomy", "Paleontology" ]
Parent Topic
Child Topic
    No Parent Topic