language-icon Old Web
English
Sign In

Euler characteristic

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by χ {displaystyle chi } (Greek lower-case letter chi). In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by χ {displaystyle chi } (Greek lower-case letter chi). The Euler characteristic was originally defined for polyhedra and used to prove various theorems about them, including the classification of the Platonic solids. Leonhard Euler, for whom the concept is named, introduced it for polyhedra but failed to rigorously prove that it is an invariant. In modern mathematics, the Euler characteristic arises from homology and, more abstractly, homological algebra. The Euler characteristic χ {displaystyle chi } was classically defined for the surfaces of polyhedra, according to the formula where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the given polyhedron. Any convex polyhedron's surface has Euler characteristic This equation is known as Euler's polyhedron formula. It corresponds to the Euler characteristic of the sphere (i.e. χ = 2), and applies identically to spherical polyhedra. An illustration of the formula on some polyhedra is given below.

[ "Geometry", "Topology", "Mathematical analysis", "Pure mathematics", "Combinatorics", "Poincaré–Hopf theorem" ]
Parent Topic
Child Topic
    No Parent Topic