Data integration involves combining data residing in different sources and providing users with a unified view of them. This process becomes significant in a variety of situations, which include both commercial (such as when two similar companies need to merge their databases) and scientific (combining research results from different bioinformatics repositories, for example) domains. Data integration appears with increasing frequency as the volume (that is, big data) and the need to share existing data explodes. It has become the focus of extensive theoretical work, and numerous open problems remain unsolved. Data integration encourages collaboration between internal as well as external users. Data integration involves combining data residing in different sources and providing users with a unified view of them. This process becomes significant in a variety of situations, which include both commercial (such as when two similar companies need to merge their databases) and scientific (combining research results from different bioinformatics repositories, for example) domains. Data integration appears with increasing frequency as the volume (that is, big data) and the need to share existing data explodes. It has become the focus of extensive theoretical work, and numerous open problems remain unsolved. Data integration encourages collaboration between internal as well as external users. Issues with combining heterogeneous data sources, often referred to as information silos, under a single query interface have existed for some time. In the early 1980s, computer scientists began designing systems for interoperability of heterogeneous databases. The first data integration system driven by structured metadata was designed at the University of Minnesota in 1991, for the Integrated Public Use Microdata Series (IPUMS). IPUMS used a data warehousing approach, which extracts, transforms, and loads data from heterogeneous sources into a single view schema so data from different sources become compatible. By making thousands of population databases interoperable, IPUMS demonstrated the feasibility of large-scale data integration. The data warehouse approach offers a tightly coupled architecture because the data are already physically reconciled in a single queryable repository, so it usually takes little time to resolve queries. The data warehouse approach is less feasible for data sets that are frequently updated, requiring the extract, transform, load (ETL) process to be continuously re-executed for synchronization. Difficulties also arise in constructing data warehouses when one has only a query interface to summary data sources and no access to the full data. This problem frequently emerges when integrating several commercial query services like travel or classified advertisement web applications. As of 2009 the trend in data integration favored loosening the coupling between data and providing a unified query-interface to access real time data over a mediated schema (see Figure 2), which allows information to be retrieved directly from original databases. This is consistent with the SOA approach popular in that era. This approach relies on mappings between the mediated schema and the schema of original sources, and transforming a query into specialized queries to match the schema of the original databases. Such mappings can be specified in two ways: as a mapping from entities in the mediated schema to entities in the original sources (the 'Global As View' (GAV) approach), or as a mapping from entities in the original sources to the mediated schema (the 'Local As View' (LAV) approach). The latter approach requires more sophisticated inferences to resolve a query on the mediated schema, but makes it easier to add new data sources to a (stable) mediated schema. As of 2010 some of the work in data integration research concerns the semantic integration problem. This problem addresses not the structuring of the architecture of the integration, but how to resolve semantic conflicts between heterogeneous data sources. For example, if two companies merge their databases, certain concepts and definitions in their respective schemas like 'earnings' inevitably have different meanings. In one database it may mean profits in dollars (a floating-point number), while in the other it might represent the number of sales (an integer). A common strategy for the resolution of such problems involves the use of ontologies which explicitly define schema terms and thus help to resolve semantic conflicts. This approach represents ontology-based data integration. On the other hand, the problem of combining research results from different bioinformatics repositories requires bench-marking of the similarities, computed from different data sources, on a single criterion such as positive predictive value. This enables the data sources to be directly comparable and can be integrated even when the natures of experiments are distinct. As of 2011 it was determined that current data modeling methods were imparting data isolation into every data architecture in the form of islands of disparate data and information silos. This data isolation is an unintended artifact of the data modeling methodology that results in the development of disparate data models. Disparate data models, when instantiated as databases, form disparate databases. Enhanced data model methodologies have been developed to eliminate the data isolation artifact and to promote the development of integrated data models. One enhanced data modeling method recasts data models by augmenting them with structural metadata in the form of standardized data entities. As a result of recasting multiple data models, the set of recast data models will now share one or more commonality relationships that relate the structural metadata now common to these data models. Commonality relationships are a peer-to-peer type of entity relationships that relate the standardized data entities of multiple data models. Multiple data models that contain the same standard data entity may participate in the same commonality relationship. When integrated data models are instantiated as databases and are properly populated from a common set of master data, then these databases are integrated. Since 2011, data hub approaches have been of greater interest than fully structured (typically relational) Enterprise Data Warehouses. Since 2013, data lake approaches have risen to the level of Data Hubs. (See all three search terms popularity on Google Trends.) These approaches combine unstructured or varied data into one location, but do not necessarily require an (often complex) master relational schema to structure and define all data in the Hub. Consider a web application where a user can query a variety of information about cities (such as crime statistics, weather, hotels, demographics, etc.). Traditionally, the information must be stored in a single database with a single schema. But any single enterprise would find information of this breadth somewhat difficult and expensive to collect. Even if the resources exist to gather the data, it would likely duplicate data in existing crime databases, weather websites, and census data. A data-integration solution may address this problem by considering these external resources as materialized views over a virtual mediated schema, resulting in 'virtual data integration'. This means application-developers construct a virtual schema—the mediated schema—to best model the kinds of answers their users want. Next, they design 'wrappers' or adapters for each data source, such as the crime database and weather website. These adapters simply transform the local query results (those returned by the respective websites or databases) into an easily processed form for the data integration solution (see figure 2). When an application-user queries the mediated schema, the data-integration solution transforms this query into appropriate queries over the respective data sources. Finally, the virtual database combines the results of these queries into the answer to the user's query.