language-icon Old Web
English
Sign In

Thermodynamic operation

A thermodynamic operation is an externally imposed manipulation that affects a thermodynamic system. The change can be either in the connection or wall between a thermodynamic system and its surroundings, or in the value of some variable in the surroundings that is in contact with a wall of the system that allows transfer of the extensive quantity belonging that variable. It is assumed in thermodynamics that the operation is conducted in ignorance of any pertinent microscopic information. A thermodynamic operation is an externally imposed manipulation that affects a thermodynamic system. The change can be either in the connection or wall between a thermodynamic system and its surroundings, or in the value of some variable in the surroundings that is in contact with a wall of the system that allows transfer of the extensive quantity belonging that variable. It is assumed in thermodynamics that the operation is conducted in ignorance of any pertinent microscopic information. A thermodynamic operation requires a contribution from an independent external agency, that does not come from the passive properties of the systems. Perhaps the first expression of the distinction between a thermodynamic operation and a thermodynamic process is in Kelvin's statement of the second law of thermodynamics: 'It is impossible, by means of inanimate material agency, to derive mechanical effect from any portion of matter by cooling it below the temperature of the surrounding objects.' A sequence of events that occurred other than 'by means of inanimate material agency' would entail an action by an animate agency, or at least an independent external agency. Such an agency could impose some thermodynamic operations. For example, those operations might create a heat pump, which of course would comply with the second law. A Maxwell's demon conducts an extremely idealized and naturally unrealizable kind of thermodynamic operation. An ordinary language expression for a thermodynamic operation is used by Edward A. Guggenheim: 'tampering' with the bodies. A typical thermodynamic operation is externally imposed change of position of a piston, so as to alter the volume of the system of interest. Another thermodynamic operation is a removal of an initially separating wall, a manipulation that unites two systems into one undivided system. A typical thermodynamic process consists of a redistribution that spreads a conserved quantity between a system and its surroundings across a previously impermeable but newly semi-permeable wall between them. More generally, a process can be considered as a transfer of some quantity that is defined by a change of an extensive state variable of the system, corresponding to a conserved quantity, so that a transfer balance equation can be written. According to Uffink, '... thermodynamic processes only take place after an external intervention on the system (such as: removing a partition, establishing thermal contact with a heat bath, pushing a piston, etc.). They do not correspond to the autonomous behaviour of a free system.' For example, for a closed system of interest, a change of internal energy (an extensive state variable of the system) can be occasioned by transfer of energy as heat. In thermodynamics, heat is not an extensive state variable of the system. The quantity of heat transferred, is however, defined by the amount of adiabatic work that would produce the same change of the internal energy as the heat transfer; energy transferred as heat is the conserved quantity. As a matter of history, the distinction, between a thermodynamic operation and a thermodynamic process, is not found in these terms in nineteenth century accounts. For example, Kelvin spoke of a 'thermodynamic operation' when he meant what present-day terminology calls a thermodynamic operation followed by a thermodynamic process. Again, Planck usually spoke of a 'process' when our present-day terminology would speak of a thermodynamic operation followed by a thermodynamic process. Planck held that all 'natural processes' (meaning, in present-day terminology, a thermodynamic operation followed by a thermodynamic process) are irreversible and proceed in the sense of increase of entropy sum. In these terms, it would be by thermodynamic operations that, if he could exist, Maxwell's demon would conduct unnatural affairs, which include transitions in the sense away from thermodynamic equilibrium. They are physically theoretically conceivable up to a point, but are not natural processes in Planck's sense. The reason is that ordinary thermodynamic operations are conducted in total ignorance of the very kinds of microscopic information that is essential to the efforts of Maxwell's demon. A thermodynamic cycle is constructed as a sequence of stages or steps. Each stage consists of a thermodynamic operation followed by a thermodynamic process. For example, an initial thermodynamic operation of a cycle of a Carnot heat engine could be taken as the setting of the working body, at a known high temperature, into contact with a thermal reservoir at the same temperature (the hot reservoir), through a wall permeable only to heat, while it remains in mechanical contact with the work reservoir. This thermodynamic operation is followed by a thermodynamic process, in which the expansion of the working body is so slow as to be effectively reversible, while internal energy is transferred as heat from the hot reservoir to the working body and as work from the working body to the work reservoir. Theoretically, the process terminates eventually, and this ends the stage. The engine is then subject to another thermodynamic operation, and the cycle proceeds into another stage. The cycle completes when the thermodynamic variables (the thermodynamic state) of the working body return to their initial values. A refrigeration device passes a working substance through successive stages, overall constituting a cycle. This may be brought about not by moving or changing separating walls around an unmoving body of working substance, but rather by moving a body of working substance to bring about exposure to a cyclic succession of unmoving unchanging walls. The effect is virtually a cycle of thermodynamic operations. The kinetic energy of bulk motion of the working substance is not a significant feature of the device, and the working substance may be practically considered as nearly at rest.

[ "Mechanics", "Quantum mechanics", "Mechanical engineering", "Thermodynamics" ]
Parent Topic
Child Topic
    No Parent Topic