language-icon Old Web
English
Sign In

Phosphorus cycle

The phosphorus cycle is the biogeochemical cycle that describes the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based compounds are usually solids at the typical ranges of temperature and pressure found on Earth. The production of phosphine gas occurs in only specialized, local conditions. Therefore, the phosphorus cycle should be viewed from whole Earth system and then specifically focused on the cycle in terrestrial and aquatic systems. The phosphorus cycle is the biogeochemical cycle that describes the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based compounds are usually solids at the typical ranges of temperature and pressure found on Earth. The production of phosphine gas occurs in only specialized, local conditions. Therefore, the phosphorus cycle should be viewed from whole Earth system and then specifically focused on the cycle in terrestrial and aquatic systems. On the land, phosphorus gradually becomes less available to plants over thousands of years, since it is slowly lost in runoff. Low concentration of phosphorus in soils reduces plant growth, and slows soil microbial growth - as shown in studies of soil microbial biomass. Soil microorganisms act as both sinks and sources of available phosphorus in the biogeochemical cycle. Locally, transformations of phosphorus are chemical, biological and microbiological: the major long-term transfers in the global cycle, however, are driven by tectonic movements in geologic time. Humans have caused major changes to the global phosphorus cycle through shipping of phosphorus minerals, and use of phosphorus fertilizer, and also the shipping of food from farms to cities, where it is lost as effluent. Phosphorus is an essential nutrient for plants and animals. Phosphorus is a limiting nutrient for aquatic organisms. Phosphorus forms parts of important life-sustaining molecules that are very common in the biosphere. Phosphorus does enter the atmosphere in very small amounts when dust is dissolved in rainwater and seaspray, but remains mostly on land and in rock and soil minerals. Eighty percent of the mined phosphorus is used to make fertilizers. Phosphates from fertilizers, sewage and detergents can cause pollution in lakes and streams. Over-enrichment of phosphate in both fresh and inshore marine waters can lead to massive algae blooms which, when they die and decay, leads to eutrophication of fresh waters only. An example of this is the Canadian Experimental Lakes Area. These freshwater algal blooms should not be confused with those in saltwater environments. Recent research suggests that the predominant pollutant responsible for algal blooms in salt water estuaries and coastal marine habitats is nitrogen. Phosphorus occurs most abundantly in nature as part of the orthophosphate ion (PO4)3−, consisting of a P atom and 4 oxygen atoms. On land most phosphorus is found in rocks and minerals. Phosphorus-rich deposits have generally formed in the ocean or from guano, and over time, geologic processes bring ocean sediments to land. Weathering of rocks and minerals release phosphorus in a soluble form where it is taken up by plants, and it is transformed into organic compounds. The plants may then be consumed by herbivores and the phosphorus is either incorporated into their tissues or excreted. After death, the animal or plant decays, and phosphorus is returned to the soil where a large part of the phosphorus is transformed into insoluble compounds. Runoff may carry a small part of the phosphorus back to the ocean. Generally with time (thousands of years) soils become deficient in phosphorus leading to ecosystem retrogression. The primary biological importance of phosphates is as a component of nucleotides, which serve as energy storage within cells (ATP) or when linked together, form the nucleic acids DNA and RNA. The double helix of our DNA is only possible because of the phosphate ester bridge that binds the helix. Besides making biomolecules, phosphorus is also found in bone and the enamel of mammalian teeth, whose strength is derived from calcium phosphate in the form of hydroxyapatite. It is also found in the exoskeleton of insects, and phospholipids (found in all biological membranes). It also functions as a buffering agent in maintaining acid base homeostasis in the human body. Phosphates move quickly through plants and animals; however, the processes that move them through the soil or ocean are very slow, making the phosphorus cycle overall one of the slowest biogeochemical cycles. The global phosphorus cycle includes four major processes: (i) tectonic uplift and exposure of phosphorus-bearing rocks such as apatite to surface weathering; (ii) physical erosion, and chemical and biological weathering of phosphorus-bearing rocks to provide dissolved and particulate phosphorus to soils, lakes and rivers; (iii) riverine and subsurface transportation of phosphorus to various lakes and run-off to the ocean; (iv) sedimentation of particulate phosphorus (e.g., phosphorus associated with organic matter and oxide/carbonate minerals) and eventually burial in marine sediments (this process can also occur in lakes and rivers). In terrestrial systems, bioavailable P (‘reactive P’) mainly comes from weathering of phosphorus-containing rocks. The most abundant primary phosphorus-mineral in the crust is apatite, which can be dissolved by natural acids generated by soil microbes and fungi, or by other chemical weathering reactions and physical erosion. The dissolved phosphorus is bioavailable to terrestrial organisms and plants and is returned to the soil after their death. Phosphorus retention by soil minerals (e.g., adsorption onto iron and aluminum oxyhydroxides in acidic soils and precipitation onto calcite in neutral-to-calcareous soils) is usually viewed as the most important factor in controlling terrestrial P-bioavailability. This process can lead to the low level of dissolved phosphorus concentrations in soil solution. Various physiological strategies are used by plants and microorganisms for obtaining phosphorus from this low level of phosphorus concentration.

[ "Biogeochemical cycle", "Phosphorus", "Phosphate", "Nutrient" ]
Parent Topic
Child Topic
    No Parent Topic