language-icon Old Web
English
Sign In

Complete spatial randomness

Complete spatial randomness (CSR) describes a point process whereby point events occur within a given study area in a completely random fashion. It is synonymous with a homogeneous spatial Poisson process. Such a process is modeled using only one parameter ρ {displaystyle ho } , i.e. the density of points within the defined area. The term complete spatial randomness is commonly used in Applied Statistics in the context of examining certain point patterns, whereas in most other statistical contexts it is referred to the concept of a spatial Poisson process. Complete spatial randomness (CSR) describes a point process whereby point events occur within a given study area in a completely random fashion. It is synonymous with a homogeneous spatial Poisson process. Such a process is modeled using only one parameter ρ {displaystyle ho } , i.e. the density of points within the defined area. The term complete spatial randomness is commonly used in Applied Statistics in the context of examining certain point patterns, whereas in most other statistical contexts it is referred to the concept of a spatial Poisson process. Data in the form of a set of points, irregularly distributed within a region of space, arise in many different contexts; examples include locations of trees in a forest, of nests of birds, of nuclei in tissue, of ill people in a population at risk. We call any such data-set a spatial point pattern and refer to the locations as events, to distinguish these from arbitrary points of the region in question. The hypothesis of complete spatial randomness for a spatial point pattern asserts that the number of events in any region follows a Poisson distribution with given mean count per uniform subdivision. The events of a pattern are independently and uniformly distributed over space; in other words, the events are equally likely to occur anywhere and do not interact with each other. 'Uniform' is used in the sense of following a uniform probability distribution across the study region, not in the sense of “evenly” dispersed across the study region. There are no interactions amongst the events, as the intensity of events does not vary over the plane. For example, the independence assumption would be violated if the existence of one event either encouraged or inhibited the occurrence of other events in the neighborhood. The probability of finding exactly k {displaystyle k} points within the area V {displaystyle V} with event density ρ {displaystyle ho } is therefore: The first moment of which, the average number of points in the area, is simply ρ V {displaystyle ho V} . This value is intuitive as it is the Poisson rate parameter. The probability of locating the N t h {displaystyle N^{mathrm {th} }} neighbor of any given point, at some radial distance r {displaystyle r} is: where D {displaystyle D} is the number of dimensions, λ {displaystyle lambda } is a density-dependent parameter given by λ = ρ π D 2 Γ ( D 2 + 1 ) {displaystyle lambda ={frac { ho pi ^{frac {D}{2}}}{Gamma ({frac {D}{2}}+1)}}} and Γ {displaystyle Gamma } is the gamma function, which when its argument is integer, is simply the factorial function. The expected value of P N ( r ) {displaystyle P_{N}(r)} can be derived via the use of the gamma function using statistical moments. The first moment is the mean distance between randomly distributed particles in D {displaystyle D} dimensions. The study of CSR is essential for the comparison of measured point data from experimental sources. As a statistical testing method, the test for CSR has many applications in the social sciences and in astronomical examinations. CSR is often the standard against which data sets are tested. Roughly described one approach to test the CSR hypothesis is the following:

[ "Poisson process", "Point process", "Poisson distribution", "Seven states of randomness" ]
Parent Topic
Child Topic
    No Parent Topic