language-icon Old Web
English
Sign In

Plutonium-242

No fission productshave a half-lifein the range of100–210 k years ...... nor beyond 15.7 M yearsLegend for superscript symbols₡  has thermal neutron capture cross section in the range of 8–50 barnsƒ  fissilem  metastable isomer№  primarily a naturally occurring radioactive material (NORM)þ  neutron poison (thermal neutron capture cross section greater than 3k barns)†  range 4–97 y: Medium-lived fission product‡  over 200,000 y: Long-lived fission productPlutonium-242 is one of the isotopes of plutonium, the second longest-lived, with a half-life of 373,300 years.The half-life of 242Pu is about 15 times longer than that of 239Pu; therefore, it is one-fifteenth as radioactive, and not one of the larger contributors to nuclear waste radioactivity.242Pu's gamma ray emissions are also weaker than those of the other isotopes. Plutonium-242 is one of the isotopes of plutonium, the second longest-lived, with a half-life of 373,300 years.The half-life of 242Pu is about 15 times longer than that of 239Pu; therefore, it is one-fifteenth as radioactive, and not one of the larger contributors to nuclear waste radioactivity.242Pu's gamma ray emissions are also weaker than those of the other isotopes. It is not fissile (though it is fissionable by fast neutrons) and its neutron capture cross section is also low. Plutonium-242 is produced by successive neutron capture on 239Pu, 240Pu, and 241Pu. The odd-mass isotopes 239Pu and 241Pu have about a 3/4 chance of undergoing fission on capture of a thermal neutron and about a 1/4 chance of retaining the neutron and becoming the following isotope. The proportion of 242Pu is low at low burnup but increases nonlinearly. Plutonium-242 has a particularly low cross section for thermal neutron capture; and it takes three neutron absorptions to become another fissile isotope (either curium-245 or plutonium-241) and then one more neutron to undergo fission. Even then, there is a chance either of those two fissile isotopes will absorb the fourth neutron instead of fissioning, becoming curium-246 (on the way to even heavier actinides like californium, which is a neutron emitter by spontaneous fission and difficult to handle) or becoming 242Pu again; so the mean number of neutrons absorbed until fission is even higher than 4. Therefore, 242Pu is particularly unsuited to recycling in a thermal reactor and would be better used in a fast reactor where it can be fissioned directly. However, 242Pu's low cross section means that relatively little of it will be transmuted during one cycle in a thermal reactor. Plutonium-242 primarily decays into uranium-238 via alpha decay, before continuing along the uranium series. Plutonium-242 will occasionally decay via spontaneous fission with a rate of 5.5 × 10−4%.

[ "Plutonium-240", "Plutonium-239" ]
Parent Topic
Child Topic
    No Parent Topic