language-icon Old Web
English
Sign In

Estimation statistics

Estimation statistics is a data analysis framework that uses a combination of effect sizes, confidence intervals, precision planning, and meta-analysis to plan experiments, analyze data and interpret results. It is distinct from null hypothesis significance testing (NHST), which is considered to be less informative. Estimation statistics, or simply estimation, is also known as the new statistics, a distinction introduced in the fields of psychology, medical research, life sciences and a wide range of other experimental sciences where NHST still remains prevalent, despite estimation statistics having been recommended as preferable for several decades. Estimation statistics is a data analysis framework that uses a combination of effect sizes, confidence intervals, precision planning, and meta-analysis to plan experiments, analyze data and interpret results. It is distinct from null hypothesis significance testing (NHST), which is considered to be less informative. Estimation statistics, or simply estimation, is also known as the new statistics, a distinction introduced in the fields of psychology, medical research, life sciences and a wide range of other experimental sciences where NHST still remains prevalent, despite estimation statistics having been recommended as preferable for several decades. The primary aim of estimation methods is to report an effect size (a point estimate) along with its confidence interval, the latter of which is related to the precision of the estimate. The confidence interval summarizes a range of likely values of the underlying population effect. Proponents of estimation see reporting a P value as an unhelpful distraction from the important business of reporting an effect size with its confidence intervals, and believe that estimation should replace significance testing for data analysis. Physics has for long employed a weighted averages method that is similar to meta-analysis. Estimation statistics in the modern era started with the development of the standardized effect size by Jacob Cohen in the 1960s. Research synthesis using estimation statistics was pioneered by Gene V. Glass with the development of the method of meta-analysis in the 1970s. Estimation methods have been refined since by Larry Hedges, Michael Borenstein, Doug Altman, Martin Gardner, Geoff Cumming and others. The systematic review, in conjunction with meta-analysis, is a related technique with widespread use in medical research. There are now over 60,000 citations to 'meta-analysis' in PubMed. Despite the widespread adoption of meta-analysis, the estimation framework is still not routinely used in primary biomedical research. In the 1990s, editor Kenneth Rothman banned the use of p-values from the journal Epidemiology; compliance was high among authors but this did not substantially change their analytical thinking. More recently, estimation methods are being adopted in fields such as neuroscience, psychology education and psychology. The Publication Manual of the American Psychological Association recommends estimation over hypothesis testing. The Uniform Requirements for Manuscripts Submitted to Biomedical Journals document makes a similar recommendation: 'Avoid relying solely on statistical hypothesis testing, such as P values, which fail to convey important information about effect size.' Many significance tests have an estimation counterpart; in almost every case, the test result (or its p-value) can be simply substituted with the effect size and a precision estimate. For example, instead of using Student's t-test, the analyst can compare two independent groups by calculating the mean difference and its 95% confidence interval. Corresponding methods can be used for a paired t-test and multiple comparisons. Similarly, for a regression analysis, an analyst would report the coefficient of determination (R2) and the model equation instead of the model's p-value. However, proponents of estimation statistics warn against reporting only a few numbers. Rather, it is advised to analyze and present data using data visualization. Examples of appropriate visualizations include the Scatter plot for regression, and Gardner-Altman plots for two independent groups. While historical data-group plots (bar charts, box plots, and violin plots) do not display the comparison, estimation plots add a second axis to explicitly visualize the effect size .

[ "Confidence interval", "Statistical significance", "p-value", "Statistical hypothesis testing", "Null hypothesis" ]
Parent Topic
Child Topic
    No Parent Topic