Ontology-based data integration involves the use of ontology(s) to effectively combine data or information from multiple heterogeneous sources. It is one of the multiple data integration approaches and may be classified as Global-As-View (GAV). The effectiveness of ontology based data integration is closely tied to the consistency and expressivity of the ontology used in the integration process. Ontology-based data integration involves the use of ontology(s) to effectively combine data or information from multiple heterogeneous sources. It is one of the multiple data integration approaches and may be classified as Global-As-View (GAV). The effectiveness of ontology based data integration is closely tied to the consistency and expressivity of the ontology used in the integration process. Data from multiple sources are characterized by multiple types of heterogeneity. The following hierarchy is often used: Ontologies, as formal models of representation with explicitly defined concepts and named relationships linking them, are used to address the issue of semantic heterogeneity in data sources. In domains like bioinformatics and biomedicine, the rapid development, adoption and public availability of ontologies has made it possible for the data integration community to leverage them for semantic integration of data and information.