language-icon Old Web
English
Sign In

Secondary surveillance radar

Secondary surveillance radar (SSR) is a radar system used in air traffic control (ATC), that not only detects and measures the position of aircraft, i.e. bearing and distance, but also requests additional information from the aircraft itself such as its identity and altitude. Unlike primary radar systems that measure the bearing and distance of targets using the detected reflections of radio signals, SSR relies on targets equipped with a radar transponder, that replies to each interrogation signal by transmitting a response containing encoded data. SSR is based on the military identification friend or foe (IFF) technology originally developed during World War II, therefore the two systems are still compatible. Monopulse secondary surveillance radar (MSSR), Mode S, TCAS and ADS-B are similar modern methods of secondary surveillance. Secondary surveillance radar (SSR) is a radar system used in air traffic control (ATC), that not only detects and measures the position of aircraft, i.e. bearing and distance, but also requests additional information from the aircraft itself such as its identity and altitude. Unlike primary radar systems that measure the bearing and distance of targets using the detected reflections of radio signals, SSR relies on targets equipped with a radar transponder, that replies to each interrogation signal by transmitting a response containing encoded data. SSR is based on the military identification friend or foe (IFF) technology originally developed during World War II, therefore the two systems are still compatible. Monopulse secondary surveillance radar (MSSR), Mode S, TCAS and ADS-B are similar modern methods of secondary surveillance. The rapid wartime development of radar had obvious applications for air traffic control (ATC) as a means of providing continuous surveillance of air traffic disposition. Precise knowledge of the positions of aircraft would permit a reduction in the normal procedural separation standards, which in turn promised considerable increases in the efficiency of the airways system. This type of radar (now called a primary radar) can detect and report the position of anything that reflects its transmitted radio signals including, depending on its design, aircraft, birds, weather and land features. For air traffic control purposes this is both an advantage and a disadvantage. Its targets do not have to co-operate, they only have to be within its coverage and be able to reflect radio waves, but it only indicates the position of the targets, it does not identify them. When primary radar was the only type of radar available, the correlation of individual radar returns with specific aircraft typically was achieved by the controller observing a directed turn by the aircraft. Primary radar is still used by ATC today as a backup/complementary system to secondary radar, although its coverage and information is more limited. The need to be able to identify aircraft more easily and reliably led to another wartime radar development, the Identification Friend or Foe (IFF) system, which had been created as a means of positively identifying friendly aircraft from unknowns. This system, which became known in civil use as secondary surveillance radar (SSR), or in the US as the air traffic control radar beacon system (ATCRBS), relies on a piece of equipment aboard the aircraft known as a 'transponder.' The transponder is a radio receiver and transmitter pair which receives on 1030 MHz and transmits on 1090 MHz. The target aircraft transponder replies to signals from an interrogator (usually, but not necessarily, a ground station co-located with a primary radar) by transmitting a coded reply signal containing the requested information. Both the civilian SSR and the military IFF have become much more complex than their war-time ancestors, but remain compatible with each other, not least to allow military aircraft to operate in civil airspace. Today's SSR can provide much more detailed information, for example, the aircraft altitude, as well as enabling the direct exchange of data between aircraft for collision avoidance. Most SSR systems rely on Mode C transponders, which report the aircraft pressure altitude. The pressure altitude is independent from the pilot's altimeter setting, thus preventing false altitude transmissions if altimeter is adjusted incorrectly. Air traffic control systems recalculate reported pressure altitudes to true altitudes based on their own pressure references, if necessary. Given its primary military role of reliably identifying friends, IFF has much more secure (encrypted) messages to prevent 'spoofing' by the enemy, and is used on many types of military platforms including air, sea and land vehicles. The International Civil Aviation Organization (ICAO) is a branch of the United Nations and its headquarters are in Montreal, Quebec, Canada. It publishes annexes to the Convention and Annex 10 addresses Standards and Recommended Practices for Aeronautical Telecommunications. The objective is to ensure that aircraft crossing international boundaries are compatible with the Air Traffic Control systems in all countries that may be visited. Volume III, Part 1 is concerned with digital data communication systems including the data link functions of Mode S while volume IV defines its operation and signals in space. The American Radio Technical Commission for Aeronautics (RTCA) and the European Organization for Civil Aviation Equipment (Eurocae) produce Minimum Operational Performance Standards for both ground and airborne equipment in accordance with the standards specified in ICAO Annex 10. Both organisations frequently work together and produce common documents. ARINC (Aeronautical Radio, Incorporated) is an airline run organisation concerned with the form, fit and function of equipment carried in aircraft. Its main purpose is to ensure competition between manufacturers by specifying the size, power requirements, interfaces and performance of equipment to be located in the equipment bay of the aircraft. The purpose of SSR is to improve the ability to detect and identify aircraft while automatically providing the Flight Level (pressure altitude) of an aircraft. An SSR ground station transmits interrogation pulses on 1030 MHz (continuously in Modes A, C and selectively, in Mode S) as its antenna rotates, or is electronically scanned, in space. An aircraft transponder within line-of-sight range 'listens' for the SSR interrogation signal and transmits a reply on 1090 MHz that provides aircraft information. The reply sent depends on the interrogation mode. The aircraft is displayed as a tagged icon on the controller's radar screen at the measured bearing and range. An aircraft without an operating transponder still may be observed by primary radar, but would be displayed to the controller without the benefit of SSR derived data. It is typically a requirement to have a working transponder in order to fly in controlled air space and many aircraft have a back-up transponder to ensure that condition is met.

[ "Radar", "Airport surveillance radar" ]
Parent Topic
Child Topic
    No Parent Topic