language-icon Old Web
English
Sign In

POWER8

POWER8 is a family of superscalar symmetric multiprocessors based on the Power ISA, announced in August 2013 at the Hot Chips conference. The designs are available for licensing under the OpenPOWER Foundation, which is the first time for such availability of IBM's highest-end processors. POWER8 is a family of superscalar symmetric multiprocessors based on the Power ISA, announced in August 2013 at the Hot Chips conference. The designs are available for licensing under the OpenPOWER Foundation, which is the first time for such availability of IBM's highest-end processors. Systems based on POWER8 became available from IBM in June 2014. Systems and POWER8 processor designs made by other OpenPOWER members was available in early 2015. POWER8 is designed to be a massively multithreaded chip, with each of its cores capable of handling eight hardware threads simultaneously, for a total of 96 threads executed simultaneously on a 12-core chip. The processor makes use of very large amounts of on- and off-chip eDRAM caches, and on-chip memory controllers enable very high bandwidth to memory and system I/O. For most workloads, the chip is said to perform two to three times as fast as its predecessor, the POWER7. POWER8 chips comes in 6- or 12-core variants; each version is fabricated in a 22 nm silicon on insulator (SOI) process using 15 metal layers. The 12-core version consists of 4.2 billion transistors and is 650 mm2 large while the 6-core version is only 362 mm2 large. However the 6- and 12-core variants can have all or just some cores active, so POWER8 processors come with 4, 6, 8, 10 or 12 cores activated. Where previous POWER processors use the GX++ bus for external communication, POWER8 removes this from the design and replaces it with the CAPI port (Coherent Accelerator Processor Interface) that is layered on top of PCI Express 3.0. The CAPI port is used to connect auxiliary specialized processors such as GPUs, ASICs and FPGAs. Units attached to the CAPI bus can use the same memory address space as the CPU, thereby reducing the computing path length. At the 2013 ACM/IEEE Supercomputing Conference, IBM and Nvidia announced an engineering partnership to closely couple POWER8 with Nvidia GPUs in future HPC systems, with the first of them announced as the Power Systems S824L. On October 14, 2016, IBM announced the formation of OpenCAPI, a new organization to spread adoption of CAPI to other platforms. Initial members are Google, AMD, Xilinx, Micron and Mellanox. POWER8 also contains a so-called on-chip controller (OCC), which is a power and thermal management microcontroller based on a PowerPC 405 processor. It has two general-purpose offload engines (GPEs) and 512 KB of embedded static RAM (SRAM), together with the possibility to access the main memory directly, while running an open-source firmware. OCC manages POWER8's operating frequency, voltage, memory bandwidth, and thermal control for both the processor and memory; it can regulate voltages through 1,764 integrated voltage regulators (IVRs) on the fly. Also, the OCC can be programmed to overclock the POWER8 processor, or to lower its power consumption by reducing the operating frequency (which is similar to the configurable TDP found in some of the Intel and AMD processors). POWER8 splits the memory controller functions by moving some of them away from the processor and closer to the memory. The scheduling logic, the memory energy management, and the RAS decision point are moved to a so called Memory Buffer chip (a.k.a. Centaur). Offloading certain memory processes to the Memory Buffer chip enables memory access optimizations, saving bandwidth and allowing for faster processor to memory communication. It also contains caching structures for an additional 16 MB of L4 cache per chip (up to 128 MB per processor). Depending on the system architecture the Memory Buffer chips are placed either on the memory modules (Custom DIMM/CDIMM, for example in S824 and E880 models), or on the memory riser card holding standard DIMMs (for example in S822LC models). The Memory Buffer chip is connected to the processor using a high-speed multi-lane serial link. The memory channel connecting each buffer chip is capable of writing 2 bytes and reading 1 byte at a time. It runs at 8 GB/s in the early Entry models, later increased in the high-end and the HPC models to 9.6 GB/s with a 40-ns latency, for a sustained bandwidth of 24 GB/s and 28.8 GB/s per channel respectively. Each processor has two memory controllers with four memory channels each, and the maximum processor to memory buffer bandwidth is 230.4 GB/s per processor. Depending on the model only one controller might be enabled, or only two channels per controller could be in use. For increased availability the link provides 'on-the-fly' lane isolation and repair.

[ "IBM", "Software" ]
Parent Topic
Child Topic
    No Parent Topic