language-icon Old Web
English
Sign In

C3-convertase

C3 convertase (C4bC2b, formerly C4bC2a) belongs to family of serine proteases and is necessary in innate immunity as a part of the complement system which eventuate in opsonisation of particles, release of inflammatory peptides, C5 convertase formation and cell lysis. C3 convertase (C4bC2b, formerly C4bC2a) belongs to family of serine proteases and is necessary in innate immunity as a part of the complement system which eventuate in opsonisation of particles, release of inflammatory peptides, C5 convertase formation and cell lysis. C3 convertase can be used to refer to the form produced in the alternative pathway (C3bBb) or the classical and lectin pathways (C4bC2b, formerly C4b2a). Once formed, both C3 convertases will catalyze the proteolytic cleavage of C3 into C3a and C3b (hence the name 'C3-convertase'). The smaller fragment called C3a serves to increase vascular permeability and promote extravasation of phagocytes, while the larger C3b fragment can be used as an opsonin or bind to either type of C3 convertase to form the trimolecular C5 convertase to activate C5 for the membrane attack complex. C3 convertase formation can occur in three different pathways: the classical, lectin, and alternative pathways. Cleavage of complement C3 by a free floating convertase, thrombin, plasmin or even a bacterial enzyme leads to formation of C3a and C3b fragments. C3b, the larger fragment, becomes covalently attached to the microbial surface or to the antibody molecules through the thioester domain at the site of complement activation. After cleavage and binding to cell surface, the C3b fragment is ready to bind a plasma protein called Factor B. The Factor B (a zymogen) is cleaved by a plasma serine protease Factor D releasing a small fragment called Ba and generating a larger fragment called Bb that remains attached to C3b. Also Mg2+ ions are necessary for forming a functional C3 convertase. Thus, the alternative C3 convertase (C3bBb) is formed and is able to cleave C3 via its dimeric Bb subunit. Since C3 convertases cleave C3 to produce C3b which can then form an additional C3 convertase through the alternative pathway, this is a potential mechanism of signal amplification in the complement cascade resulting in the deposition of large numbers of C3b molecules on the surface of activating particles, enabling opsonisation and acute local inflammation. The C3 convertase formed in the classical or lectin pathways is formed of C4b and C2b instead (NB: C2b, the larger fragment of C2 cleavage, was formerly known as C2a). The cleavage of C4 and C2 is mediated by serine proteases. In the classical pathway, this is by sequential proteolytic activation of proteins within the C1 complex (C1q, C1r, C1s) in response to binding to CRP or immunoglobulin, and in the lectin pathway it is driven by mannose binding lectin and its associated serine proteases (MASPs, particularly MASP2 but also MASP1). C4 is homologous to C3 in that it contains an internal thioester bond that ends up on C4b. Thus it can form covalent amide or ester linkages with the plasma membrane membrane of the pathogen and any associated antibodies, where it then behaves as an opsonin. The larger C2b produced by C2 hydrolysis attaches to the C4b to form the classical C3 convertase, C4b2b (formerly called C4b2a). The smaller fragments of proteolysis, C4a and C2a are released. C4a is an anaphylatoxin.

[ "Alternative complement pathway", "Classical complement pathway" ]
Parent Topic
Child Topic
    No Parent Topic