Fourth-generation programming language

A fourth-generation programming language (4GL) is any computer programming language that belongs to a class of languages envisioned as an advancement upon third-generation programming languages (3GL). Each of the programming language generations aims to provide a higher level of abstraction of the internal computer hardware details, making the language more programmer-friendly, powerful, and versatile. While the definition of 4GL has changed over time, it can be typified by operating more with large collections of information at once rather than focusing on just bits and bytes. Languages claimed to be 4GL may include support for database management, report generation, mathematical optimization, GUI development, or web development. Some researchers state that 4GLs are a subset of domain-specific languages. A fourth-generation programming language (4GL) is any computer programming language that belongs to a class of languages envisioned as an advancement upon third-generation programming languages (3GL). Each of the programming language generations aims to provide a higher level of abstraction of the internal computer hardware details, making the language more programmer-friendly, powerful, and versatile. While the definition of 4GL has changed over time, it can be typified by operating more with large collections of information at once rather than focusing on just bits and bytes. Languages claimed to be 4GL may include support for database management, report generation, mathematical optimization, GUI development, or web development. Some researchers state that 4GLs are a subset of domain-specific languages. The concept of 4GL was developed from the 1970s through the 1990s, overlapping most of the development of 3GL. While 3GLs like C, C++, C#, Java, PHP and JavaScript remain popular for a wide variety of uses, 4GLs as originally defined found narrower uses. Some advanced 3GLs like Python, Ruby, and Perl combine some 4GL abilities within a general-purpose 3GL environment. Also, libraries with 4GL-like features have been developed as add-ons for most popular 3GLs. This has blurred the distinction of 4GL and 3GL. In the 1980s and 1990s, there were efforts to develop fifth-generation programming languages (5GL). Though used earlier in papers and discussions, the term 4GL was first used formally by James Martin in his 1981 book Applications Development Without Programmers to refer to non-procedural, high-level specification languages. In some primitive way, early 4GLs were included in the Informatics MARK-IV (1967) product and Sperry's MAPPER (1969 internal use, 1979 release). The motivations for the '4GL' inception and continued interest are several. The term can apply to a large set of software products. It can also apply to an approach that looks for greater semantic properties and implementation power. Just as the 3GL offered greater power to the programmer, so too did the 4GL open up the development environment to a wider population. The early input scheme for the 4GL supported entry of data within the 72-character limit of the punched card (8 bytes used for sequencing) where a card's tag would identify the type or function. With judicious use of a few cards, the 4GL deck could offer a wide variety of processing and reporting capability whereas the equivalent functionality coded in a 3GL could subsume, perhaps, a whole box or more of cards. The 72-character metaphor continued for a while as hardware progressed to larger memory and terminal interfaces. Even with its limitations, this approach supported highly sophisticated applications. As interfaces improved and allowed longer statement lengths and grammar-driven input handling, greater power ensued. An example of this is described on the Nomad page. The development of the 4GL was influenced by several factors, with the hardware and operating system constraints having a large weight. When the 4GL was first introduced, a disparate mix of hardware and operating systems mandated custom application development support that was specific to the system in order to ensure sales. One example is the MAPPER system developed by Sperry. Though it has roots back to the beginning, the system has proven successful in many applications and has been ported to modern platforms. The latest variant is embedded in the BIS offering of Unisys. MARK-IV is now known as VISION:BUILDER and is offered by Computer Associates.

[ "Functional logic programming", "Programming domain", "Inductive programming", "Fifth-generation programming language", "Free-form language", "COMEFROM", "Greenspun's tenth rule", "Orthogonality (programming)", "Programming language generations" ]
Parent Topic
Child Topic
    No Parent Topic