language-icon Old Web
English
Sign In

Amino acid synthesis

Amino acid synthesis is the set of biochemical processes (metabolic pathways) by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can only synthesize 11 of the 20 standard amino acids (a.k.a. non-essential amino acid), and in time of accelerated growth, histidine, can be considered an essential amino acid.(See Template:Leucine metabolism in humans – this diagram does not include the pathway for β-leucine synthesis via leucine 2,3-aminomutase) Amino acid synthesis is the set of biochemical processes (metabolic pathways) by which the amino acids are produced. The substrates for these processes are various compounds in the organism's diet or growth media. Not all organisms are able to synthesize all amino acids. For example, humans can only synthesize 11 of the 20 standard amino acids (a.k.a. non-essential amino acid), and in time of accelerated growth, histidine, can be considered an essential amino acid. Of the basic set of twenty amino acids (not counting selenocysteine), humans cannot synthesize eight. In addition, the amino acids arginine, cysteine, glycine, glutamine, histidine, proline, serine, and tyrosine are considered conditionally essential, meaning they are not normally required in the diet but must be supplied exogenously to specific populations that do not synthesize it in adequate amounts. For example, enough arginine is synthesized by the urea cycle to meet the needs of an adult but perhaps not those of a growing child. Amino acids that must be obtained from the diet are called essential amino acids. Nonessential amino acids are produced in the body. The pathways for the synthesis of nonessential amino acids are quite simple. Glutamate dehydrogenase catalyzes the reductive amination of α-ketoglutarate to glutamate. A transamination reaction takes place in the synthesis of most amino acids. At this step, the chirality of the amino acid is established. Alanine and aspartate are synthesized by the transamination of pyruvate and oxaloacetate, respectively. Glutamine is synthesized from NH4+ and glutamate, and asparagine is synthesized similarly. Proline and arginine are derived from glutamate. Serine, formed from 3-phosphoglycerate, is the precursor of glycine and cysteine. Tyrosine is synthesized by the hydroxylation of phenylalanine, an essential amino acid. The pathways for the biosynthesis of essential amino acids are much more complex than those for the nonessential ones. Cortisol inhibits protein synthesis. Most amino acids are synthesized from α-ketoacids, and later transaminated from another amino acid, usually glutamate. The enzyme involved in this reaction is an aminotransferase. Glutamate itself is formed by amination of α-ketoglutarate: The α-ketoglutarate family of amino acid synthesis (synthesis of glutamate, glutamine, proline and arginine) begins with α-ketoglutarate, an intermediate in the Citric Acid Cycle. The concentration of α-ketoglutarate is dependent on the activity and metabolism within the cell along with the regulation of enzymatic activity. In E. coli citrate synthase, the enzyme involved in the condensation reaction initiating the Citric Acid Cycle is strongly inhibited by α-ketoglutarate feedback inhibition and can be inhibited by DPNH as well high concentrations of ATP. This is one of the initial regulations of the α-ketoglutarate family of amino acid synthesis. The regulation of the synthesis of glutamate from α-ketoglutarate is subject to regulatory control of the Citric Acid Cycle as well as mass action dependent on the concentrations of reactants involved due to the reversible nature of the transamination and glutamate dehydrogenase reactions. The conversion of glutamate to glutamine is regulated by glutamine synthetase (GS) and is a key step in nitrogen metabolism. This enzyme is regulated by at least four different mechanisms: 1. Repression and depression due to nitrogen levels; 2. Activation and inactivation due to enzymatic forms (taut and relaxed); 3. Cumulative feedback inhibition through end product metabolites; and 4. Alterations of the enzyme due to adenylation and deadenylation. In rich nitrogenous media or growth conditions containing high quantities of ammonia there is a low level of GS, whereas in limiting quantities of ammonia the specific activity of the enzyme is 20-fold higher. The confirmation of the enzyme plays a role in regulation depending on if GS is in the taut or relaxed form. The taut form of GS is fully active but, the removal of manganese converts the enzyme to the relaxed state. The specific conformational state occurs based on the binding of specific divalent cations and is also related to adenylation. The feedback inhibition of GS is due to a cumulative feedback due to several metabolites including L-tryptophan, L-histidine, AMP, CTP, glucosamine-6-phosphate and carbamyl phosphate, alanine, and glycine. An excess of any one product does not individually inhibit the enzyme but a combination or accumulation of all the end products have a strong inhibitory effect on the synthesis of glutamine. Glutamine synthase activity is also inhibited via adenylation. The adenylation activity is catalyzed by the bifunctional adenylyltransferase/adenylyl removal (AT/AR) enzyme. Glutamine and a regulatory protein called PII act together to stimulate adenylation. The regulation of proline biosynthesis can depend on the initial controlling step through negative feedback inhibition. In E. coli, proline allosterically inhibits Glutamate 5-kinase which catalyzes the reaction from L-glutamate to an unstable intermediate L-γ-Glutamyl phosphate.

[ "Threonine", "Lysine", "Amino acid", "Xanthoproteic reaction", "Threonine degradation", "Methionine/Phenylalanine", "Glutamine oxoglutarate aminotransferase" ]
Parent Topic
Child Topic
    No Parent Topic