language-icon Old Web
English
Sign In

Interstellar travel

Core conceptsInterstellar travel is the term used for crewed or uncrewed travel between stars or planetary systems. Interstellar travel will be much more difficult than interplanetary spaceflight; the distances between the planets in the Solar System are less than 30 astronomical units (AU)—whereas the distances between stars are typically hundreds of thousands of AU, and usually expressed in light-years. Because of the vastness of those distances, interstellar travel would require a high percentage of the speed of light; huge travel time, lasting from decades to millennia or longer. Interstellar travel is the term used for crewed or uncrewed travel between stars or planetary systems. Interstellar travel will be much more difficult than interplanetary spaceflight; the distances between the planets in the Solar System are less than 30 astronomical units (AU)—whereas the distances between stars are typically hundreds of thousands of AU, and usually expressed in light-years. Because of the vastness of those distances, interstellar travel would require a high percentage of the speed of light; huge travel time, lasting from decades to millennia or longer. The speeds required for interstellar travel in a human lifetime far exceed what current methods of spacecraft propulsion can provide. Even with a hypothetically perfectly efficient propulsion system, the kinetic energy corresponding to those speeds is enormous by today's standards of energy development. Moreover, collisions by the spacecraft with cosmic dust and gas can produce very dangerous effects both to passengers and the spacecraft itself. A number of strategies have been proposed to deal with these problems, ranging from giant arks that would carry entire societies and ecosystems, to microscopic space probes. Many different spacecraft propulsion systems have been proposed to give spacecraft the required speeds, including nuclear propulsion, beam-powered propulsion, and methods based on speculative physics. For both crewed and uncrewed interstellar travel, considerable technological and economic challenges need to be met. Even the most optimistic views about interstellar travel see it as only being feasible decades from now. However, in spite of the challenges, if or when interstellar travel is realised, a wide range of scientific benefits is expected. Most interstellar travel concepts require a developed space logistics system capable of moving millions of tons to a construction / operating location, and most would require gigawatt-scale power for construction or power (such as Star Wisp or Light Sail type concepts). Such a system could grow organically if space-based solar power became a significant component of Earth's energy mix. Consumer demand for a multi-terawatt system would automatically create the necessary multi-million ton/year logistical system. Distances between the planets in the Solar System are often measured in astronomical units (AU), defined as the average distance between the Sun and Earth, some 1.5×108 kilometers (93 million miles). Venus, the closest other planet to Earth is (at closest approach) 0.28 AU away. Neptune, the farthest planet from the Sun, is 29.8 AU away. As of January 2018, Voyager 1, the farthest man-made object from Earth, is 141.5 AU away. The closest known star, Proxima Centauri, is approximately 268,332 AU away, or over 9,000 times farther away than Neptune. Because of this, distances between stars are usually expressed in light-years (defined as the distance that light travels in vacuum in one Julian year) or in parsecs (one parsec is 3.26 ly, the distance at which stellar parallax is exactly one arcsecond, hence the name). Light in a vacuum travels around 300,000 kilometres (186,000 mi) per second, so 1 light-year is about 9.461×1012 kilometers (5.879 trillion miles) or 63,241 AU. Proxima Centauri, the nearest (albeit not naked-eye visible) star, is 4.243 light-years away. Another way of understanding the vastness of interstellar distances is by scaling: One of the closest stars to the Sun, Alpha Centauri A (a Sun-like star), can be pictured by scaling down the Earth–Sun distance to one meter (3.28 ft). On this scale, the distance to Alpha Centauri A would be 276 kilometers (171 miles).

[ "Propulsion", "Field propulsion", "Project Icarus", "Innovative Interstellar Explorer", "Project Daedalus" ]
Parent Topic
Child Topic
    No Parent Topic