language-icon Old Web
English
Sign In

Chemical potential

In thermodynamics, chemical potential of a species is energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potential of a species in a mixture is defined as the rate of change of free energy of a thermodynamic system with respect to the change in the number of atoms or molecules of the species that are added to the system. Thus, it is the partial derivative of the free energy with respect to the amount of the species, all other species' concentrations in the mixture remaining constant. The molar chemical potential is also known as partial molar free energy. When both temperature and pressure are held constant, chemical potential is the partial molar Gibbs free energy. At chemical equilibrium or in phase equilibrium the total sum of the product of chemical potentials and stoichiometric coefficients is zero, as the free energy is at a minimum.If to any homogeneous mass in a state of hydrostatic stress we suppose an infinitesimal quantity of any substance to be added, the mass remaining homogeneous and its entropy and volume remaining unchanged, the increase of the energy of the mass divided by the quantity of the substance added is the potential for that substance in the mass considered.If we wish to express in a single equation the necessary and sufficient condition of thermodynamic equilibrium for a substance when surrounded by a medium of constant pressure P and temperature T, this equation may be written: In thermodynamics, chemical potential of a species is energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potential of a species in a mixture is defined as the rate of change of free energy of a thermodynamic system with respect to the change in the number of atoms or molecules of the species that are added to the system. Thus, it is the partial derivative of the free energy with respect to the amount of the species, all other species' concentrations in the mixture remaining constant. The molar chemical potential is also known as partial molar free energy. When both temperature and pressure are held constant, chemical potential is the partial molar Gibbs free energy. At chemical equilibrium or in phase equilibrium the total sum of the product of chemical potentials and stoichiometric coefficients is zero, as the free energy is at a minimum. In semiconductor physics, the chemical potential of a system of electrons at a temperature of zero Kelvin is known as the Fermi energy. Particles tend to move from higher chemical potential to lower chemical potential. In this way, chemical potential is a generalization of 'potentials' in physics such as gravitational potential. When a ball rolls down a hill, it is moving from a higher gravitational potential (higher internal energy thus higher potential for work) to a lower gravitational potential (lower internal energy). In the same way, as molecules move, react, dissolve, melt, etc., they will always tend naturally to go from a higher chemical potential to a lower one, changing the particle number, which is conjugate variable to chemical potential. A simple example is a system of dilute molecules diffusing in a homogeneous environment. In this system, the molecules tend to move from areas with high concentration to low concentration, until eventually the concentration is the same everywhere. The microscopic explanation for this is based in kinetic theory and the random motion of molecules. However, it is simpler to describe the process in terms of chemical potentials: For a given temperature, a molecule has a higher chemical potential in a higher-concentration area, and a lower chemical potential in a low concentration area. Movement of molecules from higher chemical potential to lower chemical potential is accompanied by a release of free energy. Therefore, it is a spontaneous process. Another example, not based on concentration but on phase, is a glass of liquid water with ice cubes in it. Above 0 °C, an H2O molecule that is in the liquid phase (liquid water) has a lower chemical potential than a water molecule that is in the solid phase (ice). When some of the ice melts, H2O molecules convert from solid to liquid where their chemical potential is lower, so the ice cubes shrink. Below 0 °C, the molecules in the ice phase have the lower chemical potential, so the ice cubes grow. At the temperature of the melting point, 0 °C, the chemical potentials in water and ice are the same; the ice cubes neither grow nor shrink, and the system is in equilibrium. A third example is illustrated by the chemical reaction of dissociation of a weak acid HA (such as acetic acid, A = CH3COO−): Vinegar contains acetic acid. When acid molecules dissociate, the concentration of the undissociated acid molecules (HA) decreases and the concentrations of the product ions (H+ and A−) increase. Thus the chemical potential of HA decreases and the sum of the chemical potentials of H+ and A− increases. When the sums of chemical potential of reactants and products are equal the system is at equilibrium and there is no tendency for the reaction to proceed in either the forward or backward direction. This explains why vinegar is acidic, because acetic acid dissociates to some extent, releasing hydrogen ions into the solution. Chemical potentials are important in many aspects of equilibrium chemistry, including melting, boiling, evaporation, solubility, osmosis, partition coefficient, liquid-liquid extraction and chromatography. In each case there is a characteristic constant which is a function of the chemical potentials of the species at equilibrium.

[ "Gibbs free energy" ]
Parent Topic
Child Topic
    No Parent Topic