In fluid dynamics, an object is moving at its terminal velocity if its speed is constant due to the restraining force exerted by the fluid through which it is moving . As the speed of an object increases, so does the drag force acting on it, which also depends on the substance it is passing through (for example air or water). At some speed, the drag or force of resistance will equal the gravitational pull on the object (buoyancy is considered below). At this point the object ceases to accelerate and continues falling at a constant speed called the terminal velocity (also called settling velocity). An object moving downward faster than the terminal velocity (for example because it was thrown downwards, it fell from a thinner part of the atmosphere, or it changed shape) will slow down until it reaches the terminal velocity. Drag depends on the projected area, here, the object's cross-section or silhouette in a horizontal plane. An object with a large projected area relative to its mass, such as a parachute, has a lower terminal velocity than one with a small projected area relative to its mass, such as a bullet. Based on wind resistance, for example, the terminal speed of a skydiver in a belly-to-earth (i.e., face down) free fall position is about 195 km/h (120 mph; 54 m/s). This speed is the asymptotic limiting value of the speed, and the forces acting on the body balance each other more and more closely as the terminal speed is approached. In this example, a speed of 50% of terminal speed is reached after only about 3 seconds, while it takes 8 seconds to reach 90%, 15 seconds to reach 99% and so on. Higher speeds can be attained if the skydiver pulls in their limbs (see also freeflying). In this case, the terminal speed increases to about 320 km/h (200 mph or 90 m/s), which is almost the terminal speed of the peregrine falcon diving down on its prey. The same terminal speed is reached for a typical .30-06 bullet dropping downwards—when it is returning to the ground having been fired upwards, or dropped from a tower—according to a 1920 U.S. Army Ordnance study. Competition speed skydivers fly in a head-down position and can reach speeds of 530 km/h (330 mph; 150 m/s); the current record is held by Felix Baumgartner who jumped from a height of 128,100 feet (39,000 m) and reached 1,357.6 km/h (840 mph; 380 m/s), though he achieved this speed at high altitude, where extremely thin air presents less drag force. The biologist J. B. S. Haldane wrote, .mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 40px}.mw-parser-output .templatequote .templatequotecite{line-height:1.5em;text-align:left;padding-left:1.6em;margin-top:0} Using mathematical terms, terminal speed—without considering buoyancy effects—is given by