language-icon Old Web
English
Sign In

Equine anatomy

Equine anatomy refers to the gross and microscopic anatomy of horses and other equids, including donkeys, and zebras. While all anatomical features of equids are described in the same terms as for other animals by the International Committee on Veterinary Gross Anatomical Nomenclature in the book Nomina Anatomica Veterinaria, there are many horse-specific colloquial terms used by equestrians. Horses and other equids evolved as grazing animals, adapted to eating small amounts of the same kind of food all day long. In the wild, the horse adapted to eating prairie grasses in semi-arid regions and traveling significant distances each day in order to obtain adequate nutrition. Therefore, the digestive system of a horse is about 30 m (100 ft) long, and most of this is intestines. Digestion begins in the mouth, which is also called the 'oral cavity.' It is made up of the teeth, the hard palate, the soft palate, the tongue and related muscles, the cheeks and the lips. Horses also have three pairs of salivary glands, the parotoid (largest salivary gland and located near the poll), mandibular (located in the jaw), and sublingual (located under the tongue). Horses select pieces of forage and pick up finer foods, such as grain, with their sensitive, prehensile lips. The front teeth of the horse, called incisors, clip forage, and food is then pushed back in the mouth by the tongue, and ground up for swallowing by the premolars and molars. The esophagus is about 1.2 to 1.5 m (4 to 5 ft) in length, and carries food to the stomach. A muscular ring, called the cardiac sphincter, connects the stomach to the esophagus. This sphincter is very well developed in horses. This and the oblique angle at which the esophagus connects to the stomach explains why horses cannot vomit. The esophagus is also the area of the digestive tract where horses may suffer from choke. Horses have a relatively small stomach for their size, and this limits the amount of feed a horse can take in at one time. The average sized horse (360 to 540 kg ) has a stomach with a capacity of around 19 L (5 US gal), and works best when it contains about 7.6 L (2 US gal). Because the stomach empties when ​2⁄3 full, whether stomach enzymes have completed their processing of the food or not, and doing so prevents full digestion and proper utilization of feed, continuous foraging or several small feedings per day are preferable to one or two large ones. The horse stomach consists of a non-glandular proximal region (saccus cecus), divided by a distinct border, the margo plicatus, from the glandular distal stomach. In the stomach, assorted acids and the enzyme pepsin break down food. Pepsin allows for the further breakdown of proteins into amino acid chains. Other enzymes include resin and lipase. Additionally, the stomach absorbs some water, as well as ions and lipid-soluble compounds. The horse’s small intestine is 15 to 21 m (50 to 70 ft) long and holds 38 to 45 L (10 to 12 US gal). This is the major digestive organ, and where most nutrients are absorbed. It has three parts, the duodenum, jejunum and ileum. The majority of digestion occurs in the duodenum while the majority of absorption occurs in the jejunum. Bile from the liver aids in digesting fats in the duodenum combined with enzymes from the pancreas and small intestine. Horses do not have a gall bladder, so bile flows constantly. Most food is digested and absorbed into the bloodstream from the small intestine, including proteins, simple carbohydrate, fats, and vitamins A, D, and E. Any remaining liquids and roughage move into the large intestine. The cecum is the first section of the large intestine. It is also known as the 'water gut' or 'hind gut'. It is a cul-de-sac pouch, about 1.2 m (4 ft) long that holds 26 to 30 L (7 to 8 US gal). It contains bacteria that digest cellulose plant fiber through fermentation. These bacteria feed upon chyme digestive, and also produce certain fat-soluble vitamins which are absorbed by the horse. The reason horses must have their diets changed slowly is so the bacteria in the cecum are able to modify and adapt to the different chemical structure of new feedstuffs. Too abrupt a change in diet can cause colic, as the new food is not properly digested.

[ "Physiology", "Veterinary medicine", "Pathology", "Horse", "Anatomy" ]
Parent Topic
Child Topic
    No Parent Topic