language-icon Old Web
English
Sign In

Bohrium

Bohrium is a synthetic chemical element with the symbol Bh and atomic number 107. It is named after Danish physicist Niels Bohr. As a synthetic element, it can be created in a laboratory but is not found in nature. It is radioactive: its most stable known isotope, 270Bh, has a half-life of approximately 61 seconds, though the unconfirmed 278Bh may have a longer half-life of about 690 seconds. In the periodic table of the elements, it is a d-block transactinide element. It is a member of the 7th period and belongs to the group 7 elements as the fifth member of the 6d series of transition metals. Chemistry experiments have confirmed that bohrium behaves as the heavier homologue to rhenium in group 7. The chemical properties of bohrium are characterized only partly, but they compare well with the chemistry of the other group 7 elements. Two groups claimed discovery of the element. Evidence of bohrium was first reported in 1976 by a Soviet research team led by Yuri Oganessian, in which targets of bismuth-209 and lead-208 were bombarded with accelerated nuclei of chromium-54 and manganese-55 respectively. Two activities, one with a half-life of one to two milliseconds, and the other with an approximately five-second half-life, were seen. Since the ratio of the intensities of these two activities was constant throughout the experiment, it was proposed that the first was from the isotope bohrium-261 and that the second was from its daughter dubnium-257. Later, the dubnium isotope was corrected to dubnium-258, which indeed has a five-second half-life (dubnium-257 has a one-second half-life); however, the half-life observed for its parent is much shorter than the half-lives later observed in the definitive discovery of bohrium at Darmstadt in 1981. The IUPAC/IUPAP Transfermium Working Group (TWG) concluded that while dubnium-258 was probably seen in this experiment, the evidence for the production of its parent bohrium-262 was not convincing enough. In 1981, a German research team led by Peter Armbruster and Gottfried Münzenberg at the GSI Helmholtz Centre for Heavy Ion Research (GSI Helmholtzzentrum für Schwerionenforschung) in Darmstadt bombarded a target of bismuth-209 with accelerated nuclei of chromium-54 to produce 5 atoms of the isotope bohrium-262: This discovery was further substantiated by their detailed measurements of the alpha decay chain of the produced bohrium atoms to previously known isotopes of fermium and californium. The IUPAC/IUPAP Transfermium Working Group (TWG) recognised the GSI collaboration as official discoverers in their 1992 report. In September 1992, the German group suggested the name nielsbohrium with symbol Ns to honor the Danish physicist Niels Bohr. The Soviet scientists at the Joint Institute for Nuclear Research in Dubna, Russia had suggested this name be given to element 105 (which was finally called dubnium) and the German team wished to recognise both Bohr and the fact that the Dubna team had been the first to propose the cold fusion reaction to solve the controversial problem of the naming of element 105. The Dubna team agreed with the German group's naming proposal for element 107. There was an element naming controversy as to what the elements from 104 to 106 were to be called; the IUPAC adopted unnilseptium (symbol Uns) as a temporary, systematic element name for this element. In 1994 a committee of IUPAC recommended that element 107 be named bohrium, not nielsbohrium, since there was no precedence for using a scientist's complete name in the naming of an element. This was opposed by the discoverers as there was some concern that the name might be confused with boron and in particular the distinguishing of the names of their respective oxyanions, bohrate and borate. The matter was handed to the Danish branch of IUPAC which, despite this, voted in favour of the name bohrium, and thus the name bohrium for element 107 was recognized internationally in 1997; the names of the respective oxyanions of boron and bohrium remain unchanged despite their homophony.

[ "Parallel computing", "Atomic physics", "Nuclear physics", "Mass excess", "Transactinide element" ]
Parent Topic
Child Topic
    No Parent Topic