language-icon Old Web
English
Sign In

Interleukin 1 family

The Interleukin-1 family (IL-1 family) is a group of 11 cytokines that plays a central role in the regulation of immune and inflammatory responses to infections or sterile insults. The Interleukin-1 family (IL-1 family) is a group of 11 cytokines that plays a central role in the regulation of immune and inflammatory responses to infections or sterile insults. Discovery of these cytokines began with studies on the pathogenesis of fever. The studies were performed by Eli Menkin and Paul Beeson in 1943-1948 on the fever-producing properties of proteins released from rabbit peritoneal exudate cells. These studies were followed by contributions of several investigators, who were primarily interested in the link between fever and infection/inflammation. The basis for the term 'interleukin' was to streamline the growing number of biological properties attributed to soluble factors from macrophages and lymphocytes. IL-1 was the name given to the macrophage product, whereas IL-2 was used to define the lymphocyte product. At the time of the assignment of these names, there was no amino acid sequence analysis known and the terms were used to define biological properties. In 1985 two distinct, but distantly related complementary DNAs encoding proteins sharing human IL-1 activity were reported to be isolated from a macrophage cDNA library, thus defining two individual members of the IL-1 family – IL-1α and IL-1β. IL-1 family is a group of 11 cytokines, which induces a complex network of proinflammatory cytokines and via expression of integrins on leukocytes and endothelial cells, regulates and initiates inflammatory responses. IL-1α and IL-1β are the most studied members, because they were discovered first and because they possess strongly proinflammatory effect. They have a natural antagonist IL-1Ra (IL-1 receptor antagonist). All three of them include a beta trefoil fold and bind IL-1 receptor (IL-1R) and activate signaling via MyD88 adaptor, which is described in the Signaling section of this page. IL-1Ra regulates IL-1α and IL-1β proinflammatory activity by competing with them for binding sites of the receptor. Nine IL-1 superfamily members occur in a single cluster on human chromosome two; sequence and chromosomal anatomy evidence suggest these formed through a series of gene duplications of a proto-IL-1β ligand. In this way, IL-1β, IL-1α, IL-36α, IL-36β, IL-36γ, IL-36RA, IL-37, IL-38, and IL-1RA are very likely ancestral family members sharing a common lineage. However, IL-18 and IL-33 are on different chromosomes and there is insufficient sequence or chromosomal anatomy evidence to suggest they share common ancestry with the other IL-1 superfamily members. IL-33 and IL-18 have been included into the IL-1 superfamily due to structural similarities, overlap in function and the receptors involved in their signalling. All of the members of IL-1 family, except IL-1Ra, are first synthesized as a precursor protein, which means it is synthesized as a long form of a protein which has to be proteolytically cleaved to a shorter, active molecule, which is generally called a mature protein. IL-1 family precursors do not have a clear signal peptide for processing and secretion and none of them are found in the Golgi; they belong to so-called leaderless secretory protein group. The similar feature of IL-1α and IL-33 is that their precursor forms can bind to their respective receptor and can activate signal transduction. But this is not a common feature for all IL-1 family members, since IL-1β and IL-18 precursor forms do not bind their receptors and require proteolytic cleavage by either intracellular caspase-1 or extracellular neutrophilic proteases. The interleukin-1 superfamily has 11 members, which have similar gene structure, although originally it contained only four members IL-1α, IL-1β, IL-1Ra and IL-18. After discovery of another 5 members the updated nomenclature was generally accepted which included all members of IL-1 cytokine family. The old IL-1 members were renamed to IL-1F1, IL-1F2, IL-1F3 and IL-1F4. But according to new trends in nomenclature, the old names of IL-1 family returned. In 2010, laboratories all around the world agreed that IL-1α, IL-1β, IL-1Ra and IL-18 are more familiar to the general scientific knowledge. According to that, they suggested that IL-1F6, IL-1F8 and IL-1F9 should get new names IL-36α, IL-36β and IL-36γ, even though they are encoded by distinct genes, they use the same receptor complex IL-1Rrp2 and coreceptor IL-1RAcP and deliver almost identical signals. The nomenclature also proposes that IL-1F5 should be renamed to IL-36Ra, because it works as an antagonist to IL-36α, IL-36β and IL-36γ similar to how IL-1Ra works for IL-1α and IL-1β. Another revision was the renaming of IL-1F7 to IL-37 because this suppressing cytokine has many splicing variants, they should be called IL-37a, IL-37b and so on. For IL-1F10 there is a reserved name, IL-38.

[ "Tumor necrosis factor alpha", "Interleukin", "Internal medicine", "Immunology", "IL1 Inhibitor" ]
Parent Topic
Child Topic
    No Parent Topic