language-icon Old Web
English
Sign In

Ring of symmetric functions

In algebra and in particular in algebraic combinatorics, the ring of symmetric functions is a specific limit of the rings of symmetric polynomials in n indeterminates, as n goes to infinity. This ring serves as universal structure in which relations between symmetric polynomials can be expressed in a way independent of the number n of indeterminates (but its elements are neither polynomials nor functions). Among other things, this ring plays an important role in the representation theory of the symmetric group.The elements of Λ (unlike those of Λn) are no longer polynomials: they are formal infinite sums of monomials. We have therefore reverted to the older terminology of symmetric functions. In algebra and in particular in algebraic combinatorics, the ring of symmetric functions is a specific limit of the rings of symmetric polynomials in n indeterminates, as n goes to infinity. This ring serves as universal structure in which relations between symmetric polynomials can be expressed in a way independent of the number n of indeterminates (but its elements are neither polynomials nor functions). Among other things, this ring plays an important role in the representation theory of the symmetric group. The ring of symmetric functions can be given a coproduct and a bilinear form making it into a positive selfadjoint graded Hopf algebra that is both commutative and cocommutative. The study of symmetric functions is based on that of symmetric polynomials. In a polynomial ring in some finite set of indeterminates, a polynomial is called symmetric if it stays the same whenever the indeterminates are permuted in any way. More formally, there is an action by ring automorphisms of the symmetric group Sn on the polynomial ring in n indeterminates, where a permutation acts on a polynomial by simultaneously substituting each of the indeterminates for another according to the permutation used. The invariants for this action form the subring of symmetric polynomials. If the indeterminates are X1,...,Xn, then examples of such symmetric polynomials are

[ "Classical orthogonal polynomials", "Difference polynomials", "Combinatorics", "Discrete mathematics", "Pure mathematics", "Dominance order", "Newton's identities", "Symmetric closure", "n! conjecture", "Jack function" ]
Parent Topic
Child Topic
    No Parent Topic