language-icon Old Web
English
Sign In

Insect morphology

Insect morphology is the study and description of the physical form of insects. The terminology used to describe insects is similar to that used for other arthropods due to their shared evolutionary history. Three physical features separate insects from other arthropods: they have a body divided into three regions (head, thorax, and abdomen), have three pairs of legs, and mouthparts located outside of the head capsule. It is this position of the mouthparts which divides them from their closest relatives, the non-insect hexapods, which includes Protura, Diplura, and Collembola.Aedes aegyptiMosquitoCimex lectulariusFleaHorsefly (female)Tick (Ixodes ricinus), which is not an insect, but an arachnid, given for comparison Insect morphology is the study and description of the physical form of insects. The terminology used to describe insects is similar to that used for other arthropods due to their shared evolutionary history. Three physical features separate insects from other arthropods: they have a body divided into three regions (head, thorax, and abdomen), have three pairs of legs, and mouthparts located outside of the head capsule. It is this position of the mouthparts which divides them from their closest relatives, the non-insect hexapods, which includes Protura, Diplura, and Collembola. There is enormous variation in body structure amongst insect species. Individuals can range from 0.3 mm (fairyflies) to 30 cm across (great owlet moth);:7 have no eyes or many; well-developed wings or none; and legs modified for running, jumping, swimming, or even digging. These modifications allow insects to occupy almost every ecological niche on the planet, except the deep ocean and the Antarctic. This article describes the basic insect body and some of the major variations of the different body parts; in the process it defines many of the technical terms used to describe insect bodies. Insects, like all arthropods, have no interior skeleton; instead, they have an exoskeleton, a hard outer layer made mostly of chitin which protects and supports the body. The insect body is divided into three parts: the head, thorax, and abdomen. The head is specialized for sensory input and food intake; the thorax, which is the anchor point for the legs and wings (if present), is specialized for locomotion; and the abdomen for digestion, respiration, excretion, and reproduction.:22–48 Although the general function of the three body regions is the same across all insect species, there are major differences in basic structure, with wings, legs, antennae, and mouthparts being highly variable from group to group. The insect outer skeleton, the cuticle, is made up of two layers; the epicuticle, which is a thin, waxy, water-resistant outer layer and contains no chitin, and the layer under it called the procuticle. This is chitinous and much thicker than the epicuticle and has two layers, the outer is the exocuticle while the inner is the endocuticle. The tough and flexible endocuticle is built from numerous layers of fibrous chitin and proteins, criss-crossing each other in a sandwich pattern, while the exocuticle is rigid and sclerotized.:22–24 The exocuticle is greatly reduced in many soft-bodied insects, especially the larval stages (e.g., caterpillars). Chemically, chitin is a long-chain polymer of a N-acetylglucosamine, a derivative of glucose. In its unmodified form, chitin is translucent, pliable, resilient and quite tough. In arthropods, however, it is often modified, becoming embedded in a hardened proteinaceous matrix, which forms much of the exoskeleton. In its pure form, it is leathery, but when encrusted in calcium carbonate, it becomes much harder. The difference between the unmodified and modified forms can be seen by comparing the body wall of a caterpillar (unmodified) to a beetle (modified). From the embryonic stages itself, a layer of columnar or cuboidal epithelial cells gives rise to the external cuticle and an internal basement membrane. The majority of insect material is held in the endocuticle. The cuticle provides muscular support and acts as a protective shield as the insect develops. However, since it cannot grow, the external sclerotised part of the cuticle is periodically shed in a process called 'moulting'. As the time for moulting approaches, most of the exocuticle material is reabsorbed. In moulting, first the old cuticle separates from the epidermis (apolysis). Enzymatic moulting fluid is released between the old cuticle and epidermis, which separates the exocuticle by digesting the endocuticle and sequestering its material for the new cuticle. When the new cuticle has formed sufficiently, the epicuticle and reduced exocuticle are shed in ecdysis.:16–20 The four principal regions of an insect body segment are: tergum or dorsal, sternum or ventral and the two pleura or laterals. Hardened plates in the exoskeleton are called sclerites, which are subdivisions of the major regions - tergites, sternites and pleurites, for the respective regions tergum, sternum, and pleuron. The head in most insects is enclosed in a hard, heavily sclerotized, exoskeletal head capsule'. The main exception is in those species whose larvae are not fully sclerotised, mainly some holometabola; but even most unsclerotised or weakly sclerotised larvae tend to have well sclerotised head capsules, for example the larvae of Coleoptera and Hymenoptera. The larvae of Cyclorrhapha however, tend to have hardly any head capsule at all. The head capsule bears most of the main sensory organs, including the antennae, ocelli, and the compound eyes. It also bears the mouthparts. In the adult insect the head capsule is apparently unsegmented, though embryological studies show it to consist of six segments that bear the paired head appendages, including the mouthparts, each pair on a specific segment. Each such pair occupies one segment, though not all segments in modern insects bear any visible appendages. Of all the insect orders, Orthoptera most conveniently display the greatest variety of features found in the heads of insects, including the sutures and sclerites. Here, the vertex, or the apex (dorsal region), is situated between the compound eyes for insects with hypognathous and opisthognathous heads. In prognathous insects, the vertex is not found between the compound eyes, but rather, where the ocelli are normally found. This is because the primary axis of the head is rotated 90° to become parallel to the primary axis of the body. In some species, this region is modified and assumes a different name.:13

[ "Taxonomy (biology)", "Morphology (linguistics)", "Genus" ]
Parent Topic
Child Topic
    No Parent Topic