language-icon Old Web
English
Sign In

Effects of cannabis

Chemical compounds in the Cannabis plant, including 400 different cannabinoids such as tetrahydrocannabinol (THC), allow its drug to have various psychological and physiological effects on the human body. Different plants of the genus Cannabis contain different and often unpredictable concentrations of THC and other cannabinoids and hundreds of other molecules that have a pharmacological effect, so that the final net effect cannot reliably be foreseen. Chemical compounds in the Cannabis plant, including 400 different cannabinoids such as tetrahydrocannabinol (THC), allow its drug to have various psychological and physiological effects on the human body. Different plants of the genus Cannabis contain different and often unpredictable concentrations of THC and other cannabinoids and hundreds of other molecules that have a pharmacological effect, so that the final net effect cannot reliably be foreseen. Acute effects while under the influence can include euphoria and anxiety. Although some assert that Cannabidiol (CBD), another cannabinoid found in cannabis in varying amounts, may alleviate the adverse effects of THC that some users experience, little is known about CBD's effects on humans. The well-controlled studies with humans have a hard time showing that CBD can be distinguished from a placebo, or that it has any systematic effect on the adverse effects of cannabis. When ingested orally, THC can produce stronger psychotropic effects than when inhaled. At doses exceeding the psychotropic threshold, users may experience adverse side effects such as anxiety and panic attacks that can result in increased heart rate and changes in blood pressure. In the United States research about medical cannabis has been hindered by federal law. Smoking any substance could possibly carry similar risks as smoking tobacco due to carcinogens in all smoke, and the ultimate conclusions on these factors are disputed. Cannabis use disorder is defined as a medical diagnosis in the fifth revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5). The most prevalent psychoactive substances in cannabis are cannabinoids, particularly THC. Some varieties, having undergone careful selection and growing techniques, can yield as much as 34% THC. Another psychoactive cannabinoid present in Cannabis sativa is tetrahydrocannabivarin (THCV), but it is only found in small amounts and is a cannabinoid antagonist. There are similar compounds in cannabis that do not exhibit psychoactive response but are obligatory for functionality: cannabidiol (CBD), an isomer of THC; cannabivarin (CBV), an analog of cannabinol (CBN) with a different side chain, cannabidivarin (CBDV), an analog of CBD with a different side chain, and cannabinolic acid. How these other compounds interact with THC is not fully understood. Some clinical studies have proposed that CBD acts as a balancing agent to regulate the strength of the psychoactive agent THC. CBD is believed to regulate the metabolism of THC by inactivating cytochrome P450, an important class of enzymes that metabolize drugs. Experiments in which babies were treated with CBD followed by THC showed that CBD was associated with a substantial increase in brain concentrations of THC and its major metabolites, most likely because it decreased the rate of clearance of THC from the body. Cannabis cofactors have also been linked to lowering body temperature, modulating immune function, and cell protection. The essential oil of cannabis contains many fragrant terpenoids which may synergize with the cannabinoids to produce their unique effects. THC is converted rapidly to 11-hydroxy-THC, which is also pharmacologically active, so the euphoria outlasts measurable THC levels in blood. THC and cannabidiol are neuroprotective antioxidants. Research on rats has demonstrated that THC prevents hydroperoxide-induced oxidative damage as well as or better than other antioxidants in a chemical (Fenton reaction) system and neuronal cultures. Cannabidiol was significantly more protective than either vitamin E or vitamin C. The cannabinoid receptor is a typical G protein-coupled receptor. A characteristic of this type of receptor is the distinct pattern of how the molecule spans the cell membrane seven times. Cannabinoid receptors are located on the cell membrane, and both outside (extracellularly) and inside (intracellularly) the cell membrane. CB1 receptors, the bigger of the two, are extraordinarily abundant in the brain: 10 times more plentiful than the μ-opioid receptors responsible for the effects of morphine. CB2 receptors are structurally different (the sequence similarity between the two subtypes of receptors is 44%), found only on cells of the immune system, and seems to function similarly to its CB1 counterpart. CB2 receptors are most prevalent on B-cells, natural killer cells, and monocytes, but can also be found on polymorphonuclear neutrophil cells, T8 cells, and T4 cells. In the tonsils the CB2 receptors appear to be restricted to B-lymphocyte-enriched areas. THC and its endogenous equivalent anandamide additionally interact with glycine receptors.

[ "Cannabis", "Drug", "cannabis use" ]
Parent Topic
Child Topic
    No Parent Topic