One of the obstacles to treatment of the human immunodeficiency virus is its high genetic variability. HIV can be divided into two major types, HIV type 1 (HIV-1) and HIV type 2 (HIV-2). HIV-1 is related to viruses found in chimpanzees and gorillas living in western Africa, while HIV-2 viruses are related to viruses found in the endangered west African primate sooty mangabey. HIV-1 viruses may be further divided into groups. The HIV-1 group M viruses predominate and are responsible for the AIDS pandemic. Group M can be further subdivided into subtypes based on genetic sequence data. Some of the subtypes are known to be more virulent or are resistant to different medications. Likewise, HIV-2 viruses are thought to be less virulent and transmissible than HIV-1 M group viruses, although HIV-2 is known to cause AIDS. One of the obstacles to treatment of the human immunodeficiency virus is its high genetic variability. HIV can be divided into two major types, HIV type 1 (HIV-1) and HIV type 2 (HIV-2). HIV-1 is related to viruses found in chimpanzees and gorillas living in western Africa, while HIV-2 viruses are related to viruses found in the endangered west African primate sooty mangabey. HIV-1 viruses may be further divided into groups. The HIV-1 group M viruses predominate and are responsible for the AIDS pandemic. Group M can be further subdivided into subtypes based on genetic sequence data. Some of the subtypes are known to be more virulent or are resistant to different medications. Likewise, HIV-2 viruses are thought to be less virulent and transmissible than HIV-1 M group viruses, although HIV-2 is known to cause AIDS. HIV-1 is the most common and pathogenic strain of the virus. Scientists divide HIV-1 into a major group (Group M) and two or more minor groups, namely Group N, O and possibly a group P. Each group is believed to represent an independent transmission of SIV into humans (but subtypes within a group are not). A total of 39 ORFs are found in all six possible reading frames (RFs) of HIV-1 complete genome sequence, but only a few of them are functional. With 'M' for 'major', this is by far the most common type of HIV, with more than 90% of HIV/AIDS cases deriving from infection with HIV-1 group M. This major HIV virus which was the source of pre-1960 pandemic viruses originated in the 1920s in Léopoldville, the Belgian Congo, today known as Kinshasa, which is now the capital of the Democratic Republic of Congo (DRC). The M group is subdivided further into clades, called subtypes, that are also given a letter. There are also 'circulating recombinant forms' or CRFs derived from recombination between viruses of different subtypes which are each given a number. CRF12_BF, for example, is a recombination between subtypes B and F. The spatial movement of these subtypes moved along the railways and waterways of the Democratic Republic of Congo (DRC) from Kinshasa to these other areas. These subtypes are sometimes further split into sub-subtypes such as A1 and A2 or F1 and F2. In 2015, the strain CRF19, a recombinant of subtype A, subtype D and subtype G, with a subtype D protease, was found to be strongly associated with rapid progression to AIDS in Cuba. This is not thought to be a complete or final list, and further types are likely to be found. The 'N' stands for 'non-M, non-O'. This group was discovered by a Franco-Cameroonia team in 1998, when they identified and isolated the HIV-1 variant strain, YBF380, from a Cameroonian woman who died of AIDS in 1995. When tested, the YBF380 variant reacted with an envelope antigen from SIVcpz rather than with those of Group M or Group O, indicating it was indeed a novel strain of HIV-1. As of 2015, less than 20 Group N infections have been recorded. The O ('Outlier') group has infected about 100,000 individuals located in West-Central Africa and is not usually seen outside of that area. It is reportedly most common in Cameroon, where a 1997 survey found that about 2% of HIV-positive samples were from Group O. The group caused some concern because it could not be detected by early versions of the HIV-1 test kits. More advanced HIV tests have now been developed to detect both Group O and Group N. In 2009, a newly analyzed HIV sequence was reported to have greater similarity to a simian immunodeficiency virus recently discovered in wild gorillas (SIVgor) than to SIVs from chimpanzees (SIVcpz). The virus had been isolated from a Cameroonian woman residing in France who was diagnosed with HIV-1 infection in 2004. The scientists reporting this sequence placed it in a proposed Group P 'pending the identification of further human cases'. HIV-2 has not been widely recognized outside of Africa. The first case in the United States was in 1987. Many test kits for HIV-1 will also detect HIV-2.