In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a generalization of the notion of a sequence. In essence, a sequence is a function with domain the natural numbers, and in the context of topology, the codomain of this function is usually any topological space. However, in the context of topology, sequences do not fully encode all information about a function between topological spaces. In particular, the following two conditions are not equivalent in general for a map f between topological spaces X and Y:One direction:It is easily seen that if y is a limit of a subnet of ⟨ x α ⟩ α ∈ A {displaystyle langle x_{alpha } angle _{alpha in A}} , then y is a cluster point of ⟨ x α ⟩ α ∈ A {displaystyle langle x_{alpha } angle _{alpha in A}} .Let A be a directed set and ⟨ x α ⟩ α ∈ A {displaystyle langle x_{alpha } angle _{alpha in A}} be a net in X. For every α ∈ A {displaystyle alpha in A} define In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a generalization of the notion of a sequence. In essence, a sequence is a function with domain the natural numbers, and in the context of topology, the codomain of this function is usually any topological space. However, in the context of topology, sequences do not fully encode all information about a function between topological spaces. In particular, the following two conditions are not equivalent in general for a map f between topological spaces X and Y: It is true, however, that condition 1 implies condition 2. The difficulty encountered when attempting to prove that condition 2 implies condition 1 lies in the fact that topological spaces are, in general, not first-countable.If the first-countability axiom were imposed on the topological spaces in question, the two above conditions would be equivalent. In particular, the two conditions are equivalent for metric spaces. The purpose of the concept of a net, first introduced by E. H. Moore and H. L. Smith in 1922, is to generalize the notion of a sequence so as to confirm the equivalence of the conditions (with 'sequence' being replaced by 'net' in condition 2). In particular, rather than being defined on a countable linearly ordered set, a net is defined on an arbitrary directed set. In particular, this allows theorems similar to that asserting the equivalence of condition 1 and condition 2, to hold in the context of topological spaces that do not necessarily have a countable or linearly ordered neighbourhood basis around a point. Therefore, while sequences do not encode sufficient information about functions between topological spaces, nets do because collections of open sets in topological spaces are much like directed sets in behaviour. The term 'net' was coined by Kelley. Nets are one of the many tools used in topology to generalize certain concepts that may only be general enough in the context of metric spaces. A related notion, that of the filter, was developed in 1937 by Henri Cartan. Let A be a directed set with order relation ≥ and X be a topological space with topology T. A function f: A → X is said to be a net. If A is a directed set, we often write a net from A to X in the form (xα), which expresses the fact that the element α in A is mapped to the element xα in X. Every non-empty totally ordered set is directed. Therefore, every function on such a set is a net. In particular, the natural numbers with the usual order form such a set, and a sequence is a function on the natural numbers, so every sequence is a net. Another important example is as follows. Given a point x in a topological space, let Nx denote the set of all neighbourhoods containing x. Then Nx is a directed set, where the direction is given by reverse inclusion, so that S ≥ T if and only if S is contained in T. For S in Nx, let xS be a point in S. Then (xS) is a net. As S increases with respect to ≥, the points xS in the net are constrained to lie in decreasing neighbourhoods of x, so intuitively speaking, we are led to the idea that xS must tend towards x in some sense. We can make this limiting concept precise. If (xα) is a net from a directed set A into X, and if Y is a subset of X, then we say that (xα) is eventually in Y (or residually in Y) if there exists an α in A so that for every β in A with β ≥ α, the point xβ lies in Y.