language-icon Old Web
English
Sign In

Cyclorotor

A cyclorotor, cycloidal rotor, cycloidal propeller or cyclogiro, is a fluid propulsion device that converts shaft power into the acceleration of a fluid using a rotating axis perpendicular to the direction of fluid motion. It uses several blades with a spanwise axis parallel to the axis of rotation and perpendicular to the direction of fluid motion. These blades are cyclically pitched twice per revolution to produce force (thrust or lift) in any direction normal to the axis of rotation. Cyclorotors are used for propulsion, lift, and control on air and water vehicles. An aircraft using cyclorotors as the primary source of lift, propulsion, and control is known as a cyclogyro. The patented application, used on ships with particular actuation mechanisms both mechanical or hydraulic, are named after the name of the German company that produces them: Voith–Schneider cycloidal propellers. A cyclorotor, cycloidal rotor, cycloidal propeller or cyclogiro, is a fluid propulsion device that converts shaft power into the acceleration of a fluid using a rotating axis perpendicular to the direction of fluid motion. It uses several blades with a spanwise axis parallel to the axis of rotation and perpendicular to the direction of fluid motion. These blades are cyclically pitched twice per revolution to produce force (thrust or lift) in any direction normal to the axis of rotation. Cyclorotors are used for propulsion, lift, and control on air and water vehicles. An aircraft using cyclorotors as the primary source of lift, propulsion, and control is known as a cyclogyro. The patented application, used on ships with particular actuation mechanisms both mechanical or hydraulic, are named after the name of the German company that produces them: Voith–Schneider cycloidal propellers. Cyclorotors produce thrust by combined action of a rotation of a fixed point of the blades around a centre and the oscillation of the blades that changes their angle-of-attack over time. The joint action of the advancement produced by the orbital motion and pitch angle variation generates a higher thrust at low speed than any other propeller. In hover, the blades are actuated to a positive pitch (outward from the centre of the rotor) on the upper half of their revolution and a negative pitch (inward towards the axis of rotation) over the lower half inducing a net upward aerodynamic force and opposite fluid downwash. By varying the phase of this pitch motion the force can be shifted to any perpendicular angle or even downward. Before blade stall, increasing the amplitude of the pitching kinematics will magnify thrust. The origin of the rotocycloid propeller are Russian and relates to the aeronautic domain. Sverchkov's 'Samoljot' (St. Petersburg, 1909) or 'wheel orthopter' was the first vehicle expressly thought to have used this type of propulsion. Its scheme came near to cyclogiro, but it's difficult to classify it precisely. It had three flat surfaces and a rudder; the rear edge of one of surfaces could be bent, replacing the action of an elevator. Lift and thrust had to be created by paddle wheels consisting of 12 blades, established in pairs under a 120° angle. The blades of a concave shape were changing an angle of incidence by the means of eccentrics and springs. In a bottom of the craft 10 hp engine was arranged. Transmission was ensured by a belt. Empty weight was about 200 kg. 'Samoljot' was constructed by the military engineer E.P. Sverchkov with the grants of the Main Engineering Agency in St. Petersburg in 1909, was demonstrated at the Newest Inventions Exhibition and won a medal. Otherwise, it could not pass the preliminary tests without flying. In 1914, Russian inventor and scientist A.N. Lodygin addressed the Russian government with the project of the cyclogiro-like aircraft, his scheme was similar to Sverchkov's 'Samoljot'. The project was not carried out. In 1933, experiments in Germany by Adolf Rohrbach resulted in a paddle-wheel wing arrangement. Oscillating winglets went from positive to negative angles of attack during each revolution to create lift, and their eccentric mounting would, in theory, produce nearly any combination of horizontal and vertical forces. The DVL evaluated Rohrbach’s design, but the foreign aviation journals of the time cast doubt on the soundness of the design which meant that funding for the project could not be raised, even with a latter proposal as a Luftwaffe transport aircraft. There appears to be no evidence that this design was ever built, let alone flown. Based on Rohrbach’s paddle-wheel research, however, Platt in the US designed by 1933 his own independent Cyclogyro. His paddle-wheel wing arrangement was awarded a US patent (which was only one of many similar patents on file), and underwent extensive wind-tunnel testing at MIT in 1927. Despite this, there is no evidence Platt’s aircraft was ever built. The first operative cycloid propulsion was developed at Voith. Its origins date to the decision of the Voith company to focus on the business of transmission gear assemblies for turbines. The famous Voight propeller was based on its fluid-dynamics know-how gained from previous turbine projects. It was invented by Ernst Schneider, and enhanced by Voith. It was launched with name of Voith-Schneider Propeller (VSP) for commercial vessels. This new marine drive could significantly improve the manoeuvrability of a ship as demonstrated in the successful sea trials on the test boat Torqueo, in 1937. The first Voith Schneider Propellers were put into operation in the narrow canals of Venice, Italy. During the 1937 World Fair in Paris, Voith was awarded the grand prize – three times – for its exhibition of Voith Schneider Propellers and Voith turbo-transmissions. A year later, two of Paris' fire-fighting boats started operating with the new VSP system. Cyclorotors provide a high degree of control. Traditional propellers, rotors, and jet engines produce thrust only along their axis of rotation and require rotation of the entire device to alter the thrust direction. This rotation requires large forces and comparatively long time scales since the propeller inertia is considerable, and the rotor gyroscopic forces resist rotation. For many practical applications (helicopters, airplanes, ships) this requires rotating the entire vessel. In contrast, cyclorotors need only to vary the blade pitch motions. Since there is little inertia associated with blade pitch change, thrust vectoring in the plane perpendicular to the axis of rotation is rapid. Cyclorotors can produce lift and thrust at high advance ratios, which, in theory, would enable a cyclogyro aircraft to fly at subsonic speeds well exceeding those of single rotor helicopters. Single rotor helicopters are limited in forward speed by a combination of retreating blade stall and sonic blade tip constraints. As helicopters fly forward, the tip of the advancing blade experiences a wind velocity that is the sum of the helicopter forward speed and rotor rotational speed. This value cannot exceed the speed of sound if the rotor is to be efficient and quiet. Slowing the rotor rotational speed avoids this problem, but presents another. In the traditional method of the composition of velocity it is easy to understand that the velocity experienced by the retreating blade has a value that is produced by the vector composition of the velocity of blade rotation and the freestream velocity. In this condition it is evident that in presence of a sufficiently high advance ratio the velocity of air on the retreating blade is low. The flapping movement of the blade changes the angle of attack. It is then possible for the blade to reach the stall condition. In this case it is necessary that the stalling blade increases the pitch angle to keep some lift capability. This risk puts constraints on the design of the system. An accurate choice of the wing profile is necessary and careful dimensioning of the radius of the rotor for the specified speed range. Slow speed cyclorotors bypass this problem through a horizontal axis of rotation and operating at a comparatively low blade tip speed. For higher speeds, which may become necessary for industrial applications, it seems necessary to adopt more sophisticated strategies and solutions. A solution is the independent actuation of the blades which have been recently patented and successfully tested for naval use by use on hydraulic actuation system. The horizontal axis of rotation always provides an advancement of the upper blades, that produce always a positive lift by the full rotor. These characteristics could help overcome two issues of helicopters: their low energy efficiency and the advance ratio limitation.

[ "Propulsion", "Aerodynamics", "Cycloid", "Rotor (electric)", "Kinematics" ]
Parent Topic
Child Topic
    No Parent Topic