language-icon Old Web
English
Sign In

Toxin-antitoxin system

A toxin-antitoxin system is a set of two or more closely linked genes that together encode both a 'toxin' protein and a corresponding 'antitoxin'. When these systems are contained on plasmids – transferable genetic elements – they ensure that only the daughter cells that inherit the plasmid survive after cell division. If the plasmid is absent in a daughter cell, the unstable antitoxin is degraded and the stable toxic protein kills the new cell; this is known as 'post-segregational killing' (PSK). Toxin-antitoxin systems are widely distributed in prokaryotes, and organisms often have them in multiple copies. A toxin-antitoxin system is a set of two or more closely linked genes that together encode both a 'toxin' protein and a corresponding 'antitoxin'. When these systems are contained on plasmids – transferable genetic elements – they ensure that only the daughter cells that inherit the plasmid survive after cell division. If the plasmid is absent in a daughter cell, the unstable antitoxin is degraded and the stable toxic protein kills the new cell; this is known as 'post-segregational killing' (PSK). Toxin-antitoxin systems are widely distributed in prokaryotes, and organisms often have them in multiple copies. Toxin-antitoxin systems are typically classified according to how the antitoxin neutralises the toxin. In a type I toxin-antitoxin system, the translation of messenger RNA (mRNA) that encodes the toxin is inhibited by the binding of a small non-coding RNA antitoxin that binds the toxin mRNA. The toxic protein in a type II system is inhibited post-translationally by the binding of an antitoxin protein. Type III toxin-antitoxin systems consist of a small RNA that binds directly to the toxin protein and inhibits its activity. There are also types IV-VI, which are less common. Toxin-antitoxin genes are often inherited through horizontal gene transfer and are associated with pathogenic bacteria, having been found on plasmids conferring antibiotic resistance and virulence. Chromosomal toxin-antitoxin systems also exist, some of which are thought to perform cell functions such as responding to stresses, causing cell cycle arrest and bringing about programmed cell death. In evolutionary terms, toxin-antitoxin systems can be considered selfish DNA in that the purpose of the systems are to replicate, regardless of whether they benefit the host organism or not. Some have proposed adaptive theories to explain the evolution of toxin-antitoxin systems; for example, chromosomal toxin-antitoxin systems could have evolved to prevent the inheritance of large deletions of the host genome. Toxin-antitoxin systems have several biotechnological applications, such as a maintaining plasmids in cell lines, targets for antibiotics, and as positive selection vectors. As stated above, toxin-antitoxin systems are well characterized as plasmid addiction modules. It was also proposed that toxin-antitoxin systems have evolved as plasmid exclusion modules. A cell that would carry two plasmids from the same incompatibility group will eventually generate two daughters cells carrying either plasmid. Should one of these plasmids encode for a TA system, it's 'displacement' by another TA-free plasmid system will prevent its inheritance and thus induce post-segregetational killing. This theory was corroborated through computer modelling. Toxin-antitoxin systems can also be found on other mobile genetic elements such as conjugative transposons and temperate bacteriophages and could be implicated in the maintenance and competition of these elements. Toxin-antitoxin systems could prevent harmful large deletions in a bacterial genome, though arguably deletions of large coding regions are fatal to a daughter cell regardless. In Vibrio cholerae, multiple type II toxin-antitoxin systems located in a super-integron were shown to prevent the loss of gene cassettes. mazEF, a toxin-antitoxin locus found in E. coli and other bacteria, was proposed to induce programmed cell death in response to starvation, specifically a lack of amino acids. This would release the cell's contents for absorption by neighbouring cells, potentially preventing the death of close relatives, and thereby increasing the inclusive fitness of the cell that perished. This would be an example of altruism and how bacterial colonies could resemble multicellular organisms. However, the 'mazEF-mediated PCD' has largely been refuted by several studies. Another theory states that chromosomal toxin-antitoxin systems are designed to be bacteriostatic rather than bactericidal. RelE, for example, is a global inhibitor of translation, is induced during nutrient stress. By shutting down translation under stress, it could reduce the chance of starvation by lowering the cell's nutrient requirements. However, it was shown that several toxin-antitoxin systems, including relBE, do not give any competitive advantage under any stress condition. It has been proposed that chromosomal homologues of plasmid toxin-antitoxin systems may serve as anti-addiction modules, which would allow progeny to lose a plasmid without suffering the effects of the toxin it encodes. For example, a chromosomal copy of the ccdA antitoxin encoded in the chromosome of Erwinia chrysanthemi is able to neutralize the ccdB toxin encoded on the F plasmid and thus, prevent toxin activation when such a plasmid is lost. Similarly, the ataR antitoxin encoded on the chromosome of E. coli O157:H7 is able neutralize the ataTP toxin encoded on plasmids found in other enterohemorragic E. coli. Type III toxin-antitoxin systems have been shown to protect bacteria from bacteriophages. During an infection, bacteriophages hijack transcription and translation, which could prevent antitoxin replenishment and release toxin, triggering what is called an 'abortive infection'. Similar protective effects have been observed with type I and type II toxin-antitoxin systems.

[ "Microbial toxins", "Plasmid", "Escherichia coli", "Antitoxin", "vapBC", "Toxin-antitoxin complex" ]
Parent Topic
Child Topic
    No Parent Topic