language-icon Old Web
English
Sign In

COX-2 inhibitor

Selective COX-2 inhibitors are a type of nonsteroidal anti-inflammatory drug (NSAID) that directly targets cyclooxygenase-2, COX-2, an enzyme responsible for inflammation and pain. Targeting selectivity for COX-2 reduces the risk of peptic ulceration, and is the main feature of celecoxib, rofecoxib and other members of this drug class. Selective COX-2 inhibitors are a type of nonsteroidal anti-inflammatory drug (NSAID) that directly targets cyclooxygenase-2, COX-2, an enzyme responsible for inflammation and pain. Targeting selectivity for COX-2 reduces the risk of peptic ulceration, and is the main feature of celecoxib, rofecoxib and other members of this drug class. After several COX-2 inhibiting drugs were approved for marketing, data from clinical trials revealed that COX-2 inhibitors caused a significant increase in heart attacks and strokes, with some drugs in the class having worse risks than others. Rofecoxib (commonly known as Vioxx) was taken off the market in 2004 because of these concerns and celecoxib and traditional NSAIDs received boxed warnings on their labels. Many COX-2-specific inhibitors have been removed from the U.S. market. As of December 2011, only Celebrex (generic name is celecoxib) is still available for purchase in the United States. Some COX-2 inhibitors are used in a single dose to treat pain after surgery. Etoricoxib appears as good as if not better than other pain medications. Celecoxib appears to be about as useful as ibuprofen. NSAIDs are often used in treatment of acute gout attacks. COX-2 inhibitors appear to work as well as nonselective NSAIDS. They have not been compared to other treatment options such as colchicine or glucocorticoids. COX-2 appears to be related to cancers and abnormal growths in the intestinal tract. COX inhibitors have been shown to reduce the occurrence of cancers and pre-cancerous growths. The National Cancer Institute has done some studies on COX-2 and cancer. The FDA has approved Celebrex for treatment of familial adenomatous polyposis (FAP). COX-2 inhibitors are currently being studied in breast cancer and appear to be beneficial. COX-2 inhibitors have been found to be effective in suppressing inflammatory neurodegenerative pathways in mental illness, with beneficial results in trials for major depressive disorder as well as schizophrenia. The inhibition of COX-2 is paramount for the anti-inflammatory and analgesic function of the selective COX-2 inhibitor celecoxib. However, with regard to this drug's promise for the therapy of advanced cancers, it is unclear whether the inhibition of COX-2 plays a dominant role, and this has become a controversial and intensely researched issue. In recent years, several additional intracellular components (besides COX-2) were discovered that appear to be important for mediating the anticancer effects of celecoxib in the absence of COX-2. Moreover, a recent study with various malignant tumor cells showed that celecoxib could inhibit the growth of these cells, even though some of these cancer cells didn't even contain COX-2. Additional support for the idea that other targets besides COX-2 are important for celecoxib's anticancer effects has come from studies with chemically modified versions of celecoxib. Several dozen analogs of celecoxib were generated with small alterations in their chemical structures. Some of these analogs retained COX-2 inhibitory activity, whereas many others didn't. However, when the ability of all these compounds to kill tumor cells in cell culture was investigated, it turned out that the antitumor potency did not at all depend on whether or not the respective compound could inhibit COX-2, showing that inhibition of COX-2 was not required for the anticancer effects. One of these compounds, 2,5-dimethyl-celecoxib, which entirely lacks the ability to inhibit COX-2, actually turned out to display stronger anticancer activity than celecoxib itself and this anticancer effect could also be verified in highly drug-resistant tumor cells and in various animal tumor models.

[ "Celecoxib", "Cyclooxygenase", "Prostaglandin", "Apricoxib" ]
Parent Topic
Child Topic
    No Parent Topic