language-icon Old Web
English
Sign In

Low level laser therapy

Low-level laser therapy (LLLT) is a form of medicine that applies low-level (low-power) lasers or light-emitting diodes (LEDs) to the surface of the body. Whereas high-power lasers are used in laser medicine to cut or destroy tissue, it is claimed that application of low-power lasers relieves pain or stimulates and enhances cell function.If vets want to try this therapy, they have an obligation to be clear with client that the risks and benefits have not been established and that the treatment is essentially experimental. There is nothing wrong with using such a treatment given appropriate informed consent, but the aggressive marketing of laser equipment to vets as a profitable treatment is ethically questionable given the lack of good evidence that it is a truly safe and effective treatment for any condition. Low-level laser therapy (LLLT) is a form of medicine that applies low-level (low-power) lasers or light-emitting diodes (LEDs) to the surface of the body. Whereas high-power lasers are used in laser medicine to cut or destroy tissue, it is claimed that application of low-power lasers relieves pain or stimulates and enhances cell function. The effects of LLLT appear to be limited to a specified set of wavelengths of laser, and administering LLLT below the dose range does not appear to be effective. Despite a lack of consensus over its validity, some studies suggest that LLLT may be modestly effective, in relieving short-term pain for rheumatoid arthritis, osteoarthritis, acute and chronic neck pain, tendinopathy, and possibly, chronic joint disorders. The evidence for LLLT being useful in the treatment of low back pain, dentistry, and wound healing is unclear. Variations of LLLT have gone by a variety of alternate names including low-power laser therapy (LPLT), soft laser therapy, low-intensity laser therapy, low-energy laser therapy, cold laser therapy, bio-stimulation laser therapy, photobiomodulation, photo-biotherapy, therapeutic laser, and monochromatic infrared light energy (MIRE) therapy. When LLLT is administered to so-called 'acupuncture points', the procedure may be called laser acupuncture. When applied to the head, LLLT may be known as transcranial photobiomodulation, transcranial near-infrared laser therapy (NILT), or transcranial low level light therapy. Various LLLT devices have been promoted for use in treatment of several musculoskeletal conditions including carpal tunnel syndrome (CTS), fibromyalgia, osteoarthritis, and rheumatoid arthritis. They have also been promoted for temporomandibular joint (TMJ) disorders, wound healing, smoking cessation, and tuberculosis. While these treatments may briefly help some people with pain management, evidence does not support claims that they change long term outcomes, or that they work better than other, low tech ways of applying heat. LLLT appears to be effective for preventing oral mucositis in recipients of a stem cell transplant with chemotherapy. Research is ongoing about the mechanism of LLLT. The effects of LLLT appear to be limited to a specified set of wavelengths of laser, and administering LLLT below the dose range does not appear to be effective. Photochemical reactions are well known in biological research, and LLLT make use of the first law in photochemistry (Grotthuss-Draper law): light must be absorbed by a chemical substance in order for a photochemical reaction to take place. In LLLT that chemical substance is representated by the respiratory enzyme cytochrome c oxidase which is involved in the electron transport chain in mitochondria, which is the generally accepted theory. Hungarian physician and surgeon Endre Mester (1903-1984) is credited with the discovery of the biological effects of low power lasers, which occurred a few years after the 1960 invention of the ruby laser and the 1961 invention of the helium–neon (HeNe) laser. Mester accidentally discovered that low-level ruby laser light could regrow hair during an attempt to replicate an experiment that showed that such lasers could reduce tumors in mice. The laser he was using was faulty and wasn't so powerful as he thought. It failed to affect the tumors, but he noticed that in the places where he had shaved the mice in order to do the experiments, the hair grew back more quickly on the treated mice than on those among the control group. He published those results in 1967. He went on to show that low level HeNe light could accelerate wound healing in mice. By the 1970s he was applying low level laser light to treat people with skin ulcers. In 1974 he founded the Laser Research Center at the Semmelweis Medical University in Budapest, and continued working there for the remainder of his life. His sons carried on his work and brought it to the United States. By 1987 companies selling lasers were claiming that they could treat pain, accelerate healing of sports injuries, and treat arthritis, but there was little evidence for this at that time. By 2016 they had been marketed for wound healing, smoking cessation, tuberculosis, and musculoskeletal conditions such as temporomandibular joint disorders, carpal tunnel syndrome, fibromyalgia, osteoarthritis, and rheumatoid arthritis, and there was still little evidence for these uses, other than a possible use in temporarily treating muscle or joint pain. Mester originally called this approach 'laser biostimulation'', but it soon became known as “low level laser therapy' and with the adaptation of light emitting diodes by those studying this approach, it became known as 'low level light therapy', and to resolve confusion around the exact meaning of 'low level', the term 'photobiomodulation' arose.

[ "Physical therapy", "Biochemistry", "Surgery", "laser therapy", "terapia laser" ]
Parent Topic
Child Topic
    No Parent Topic