language-icon Old Web
English
Sign In

Time dilation

Time dilation is a difference in the elapsed time measured by two clocks, either due to them having a velocity relative to each other, or by there being a gravitational potential difference between their locations. After compensating for varying signal delays due to the changing distance between an observer and a moving clock (i.e. Doppler effect), the observer will measure the moving clock as ticking slower than a clock that is at rest in the observer's own reference frame. A clock that is close to a massive body (and which therefore is at lower gravitational potential) will record less elapsed time than a clock situated further from the said massive body (and which is at a higher gravitational potential). Time dilation is a difference in the elapsed time measured by two clocks, either due to them having a velocity relative to each other, or by there being a gravitational potential difference between their locations. After compensating for varying signal delays due to the changing distance between an observer and a moving clock (i.e. Doppler effect), the observer will measure the moving clock as ticking slower than a clock that is at rest in the observer's own reference frame. A clock that is close to a massive body (and which therefore is at lower gravitational potential) will record less elapsed time than a clock situated further from the said massive body (and which is at a higher gravitational potential). These predictions of the theory of relativity have been repeatedly confirmed by experiment, and they are of practical concern, for instance in the operation of satellite navigation systems such as GPS and Galileo. Time dilation has also been the subject of science fiction works, as it technically provides the means for forward time travel. Time dilation by the Lorentz factor was predicted by several authors at the turn of the 20th century. Joseph Larmor (1897), at least for electrons orbiting a nucleus, wrote '... individual electrons describe corresponding parts of their orbits in times shorter for the system in the ratio : 1 − v 2 c 2 {displaystyle scriptstyle {sqrt {1-{frac {v^{2}}{c^{2}}}}}} '. Emil Cohn (1904) specifically related this formula to the rate of clocks. In the context of special relativity it was shown by Albert Einstein (1905) that this effect concerns the nature of time itself, and he was also the first to point out its reciprocity or symmetry. Subsequently, Hermann Minkowski (1907) introduced the concept of proper time which further clarified the meaning of time dilation. Special relativity indicates that, for an observer in an inertial frame of reference, a clock that is moving relative to him will be measured to tick slower than a clock that is at rest in his frame of reference. This case is sometimes called special relativistic time dilation. The faster the relative velocity, the greater the time dilation between one another, with the rate of time reaching zero as one approaches the speed of light (299,792,458 m/s). This causes massless particles that travel at the speed of light to be unaffected by the passage of time. Theoretically, time dilation would make it possible for passengers in a fast-moving vehicle to advance further into the future in a short period of their own time. For sufficiently high speeds, the effect is dramatic. For example, one year of travel might correspond to ten years on Earth. Indeed, a constant 1 g acceleration would permit humans to travel through the entire known Universe in one human lifetime. With current technology severely limiting the velocity of space travel, however, the differences experienced in practice are minuscule: after 6 months on the International Space Station (ISS) (which orbits Earth at a speed of about 7,700 m/s) an astronaut would have aged about 0.005 seconds less than those on Earth. The cosmonauts Sergei Krikalev and Sergei Avdeyev both experienced time dilation of about 20 milliseconds compared to time that passed on Earth. Time dilation can be inferred from the observed constancy of the speed of light in all reference frames dictated by the second postulate of special relativity.

[ "Special relativity", "Theory of relativity", "Kennedy–Thorndike experiment", "Bell's spaceship paradox", "Speed of light", "Twin paradox", "Time dilation of moving particles" ]
Parent Topic
Child Topic
    No Parent Topic