language-icon Old Web
English
Sign In

Optical character recognition

Optical character recognition or optical character reader (OCR) is the mechanical or electronic conversion of images of typed, handwritten or printed text into machine-encoded text, whether from a scanned document, a photo of a document, a scene-photo (for example the text on signs and billboards in a landscape photo) or from subtitle text superimposed on an image (for example from a television broadcast). Widely used as a form of information entry from printed paper data records – whether passport documents, invoices, bank statements, computerized receipts, business cards, mail, printouts of static-data, or any suitable documentation – it is a common method of digitizing printed texts so that they can be electronically edited, searched, stored more compactly, displayed on-line, and used in machine processes such as cognitive computing, machine translation, (extracted) text-to-speech, key data and text mining. OCR is a field of research in pattern recognition, artificial intelligence and computer vision. Early versions needed to be trained with images of each character, and worked on one font at a time. Advanced systems capable of producing a high degree of recognition accuracy for most fonts are now common, and with support for a variety of digital image file format inputs. Some systems are capable of reproducing formatted output that closely approximates the original page including images, columns, and other non-textual components. Early optical character recognition may be traced to technologies involving telegraphy and creating reading devices for the blind. In 1914, Emanuel Goldberg developed a machine that read characters and converted them into standard telegraph code. Concurrently, Edmund Fournier d'Albe developed the Optophone, a handheld scanner that when moved across a printed page, produced tones that corresponded to specific letters or characters. In the late 1920s and into the 1930s Emanuel Goldberg developed what he called a 'Statistical Machine' for searching microfilm archives using an optical code recognition system. In 1931 he was granted USA Patent number 1,838,389 for the invention. The patent was acquired by IBM. With the advent of smart-phones and smartglasses, OCR can be used in internet connected mobile device applications that extract text captured using the device's camera. These devices that do not have OCR functionality built into the operating system will typically use an OCR API to extract the text from the image file captured and provided by the device. The OCR API returns the extracted text, along with information about the location of the detected text in the original image back to the device app for further processing (such as text-to-speech) or display. In 1974, Ray Kurzweil started the company Kurzweil Computer Products, Inc. and continued development of omni-font OCR, which could recognize text printed in virtually any font (Kurzweil is often credited with inventing omni-font OCR, but it was in use by companies, including CompuScan, in the late 1960s and 1970s). Kurzweil decided that the best application of this technology would be to create a reading machine for the blind, which would allow blind people to have a computer read text to them out loud. This device required the invention of two enabling technologies – the CCD flatbed scanner and the text-to-speech synthesizer. On January 13, 1976, the successful finished product was unveiled during a widely reported news conference headed by Kurzweil and the leaders of the National Federation of the Blind. In 1978, Kurzweil Computer Products began selling a commercial version of the optical character recognition computer program. LexisNexis was one of the first customers, and bought the program to upload legal paper and news documents onto its nascent online databases. Two years later, Kurzweil sold his company to Xerox, which had an interest in further commercializing paper-to-computer text conversion. Xerox eventually spun it off as Scansoft, which merged with Nuance Communications. The research group headed by A. G. Ramakrishnan at the Medical intelligence and language engineering lab, Indian Institute of Science, has developed PrintToBraille tool, an open source GUI front end that can be used by any OCR to convert scanned images of printed books to Braille books. In the 2000s, OCR was made available online as a service (WebOCR), in a cloud computing environment, and in mobile applications like real-time translation of foreign-language signs on a smartphone.

[ "Computer vision", "Machine learning", "Artificial intelligence", "Pattern recognition", "Image (mathematics)", "indian scripts", "font recognition", "page layout analysis", "Tesseract", "optical character recognition software" ]
Parent Topic
Child Topic
    No Parent Topic