language-icon Old Web
English
Sign In

Visual spatial attention

Visual spatial attention is a form of visual attention that involves directing attention to a location in space. Similar to its temporal counterpart visual temporal attention, these attention modules have been widely implemented in video analytics in computer vision to provide enhanced performance and human interpretable explanation of deep learning models. Visual spatial attention is a form of visual attention that involves directing attention to a location in space. Similar to its temporal counterpart visual temporal attention, these attention modules have been widely implemented in video analytics in computer vision to provide enhanced performance and human interpretable explanation of deep learning models. Spatial attention allows humans to selectively process visual information through prioritization of an area within the visual field. A region of space within the visual field is selected for attention and the information within this region then receives further processing. Research shows that when spatial attention is evoked, an observer is typically faster and more accurate at detecting a target that appears in an expected location compared to an unexpected location. Spatial attention is distinctive from other forms of visual attention such as object-based attention and feature-based attention. These other forms of visual attention select an entire object or a specific feature of an object regardless of its location, whereas spatial attention selects a specific region of space and the objects and features within that region are processed. A key property of visual attention is that attention can be selected based on spatial location and spatial cueing experiments have been used to assess this type of selection. In Posner's cueing paradigm, the task was to detect a target that could be presented in one of two locations and respond as quickly as possible. At the start of each trial, a cue is presented that either indicates the location of the target (valid cue) or indicates the incorrect location thus misdirecting the observer (invalid cue). In addition, on some trials there is no information given about the location of the target, as no cue is presented (neutral trials). Two distinct cues were used; the cue was either a peripheral ‘flicker’ around the target's location (peripheral cue) or the cue was centrally displayed as a symbol, such as an arrow pointing to the location of the target (central cue). Observers are faster and more accurate at detecting and recognising a target if the location of the target is known in advance. Furthermore, misinforming subjects about the location of the target leads to slower reaction times and poorer accuracy relative to performance when no information about the location of the target is given. Spatial cueing tasks typically assess covert spatial attention, which refers to attention that can change spatially without any accompanying eye movements. To investigate covert attention, it is necessary to ensure that observer's eyes remain fixated at one location throughout the task. In spatial cueing tasks, subjects are instructed to fixate on a central fixation point. Typically it takes 200 ms to make a saccadic eye movement to a location. Therefore, the combined duration of the cue and target is typically presented in less than 200 ms. This ensures that covert spatial attention is being measured and the effects are not due to overt eye movements. Some studies specifically monitor eye movements to ensure that the observer's eyes are continually fixated on the central fixation point. The central and peripheral cues in spatial cueing experiments can assess the orienting of covert spatial attention. These two cues appear to use different mechanisms for orienting spatial attention. The peripheral cues tend to attract attention automatically, recruiting bottom-up attentional control processes. Conversely, central cues are thought to be under voluntary control and therefore use top-down processes. Studies have shown that peripheral cues are difficult to ignore, as attention is oriented towards the peripheral cue even when the observer knows the cue does not predict the location of the target. Peripheral cues also cause an allocation of attention much faster than central cues, as central cues require greater processing time to interpret the cue.

[ "Perception", "Stimulus (physiology)", "visual attention", "Visual perception" ]
Parent Topic
Child Topic
    No Parent Topic