language-icon Old Web
English
Sign In

Turn (biochemistry)

A turn is an element of secondary structure in proteins where the polypeptide chain reverses its overall direction.turns excluded from all the above categories A turn is an element of secondary structure in proteins where the polypeptide chain reverses its overall direction. According to one definition, a turn is a structural motif where the Cα atoms of two residues separated by a few (usually 1 to 5) peptide bonds are close (less than 7 Å ). The proximity of the terminal Cα atoms often correlates with formation of an inter main chain hydrogen bond between the corresponding residues. Such hydrogen bonding is the basis for the original, perhaps better known, turn definition. In many cases, but not all, the hydrogen-bonding and Cα-distance definitions are equivalent. Turns are classified according to the separation between the two end residues: Turns are classified by their backbone dihedral angles (see Ramachandran plot). A turn can be converted into its inverse turn (in which the main chain atoms have opposite chirality) by changing the sign on its dihedral angles. (The inverse turn is not a true enantiomer since the Cα atom chirality is maintained.) Thus, the γ-turn has two forms, a classical form with (φ, ψ) dihedral angles of roughly (75°, −65°) and an inverse form with dihedral angles (−75°, 65°). At least eight forms of the beta turn occur, varying in whether a cis isomer of a peptide bond is involved and on the dihedral angles of the central two residues. The classical and inverse β-turns are distinguished with a prime, e.g., type I and type I′ beta turns. If an i → i + 3 hydrogen bond is taken as the criterion for turns, the four categories of Venkatachalam (I, II, II′, I′) suffice to describe all possible beta turns. All four occur frequently in proteins but I is most common, followed by II, I′ and II′ in that order. An ω-loop is a catch-all term for a longer, extended or irregular loop without fixed internal hydrogen bonding. In many cases, one or more residues are involved in two partially overlapping turns. For example, in a sequence of 5 residues, both residues 1 to 4 and residues 2 to 5 form a turn; in such a case, one speaks of an (i, i + 1) double turn. Multiple turns (up to sevenfold) occur commonly in proteins. Beta bend ribbons are a different type of multiple turn. A hairpin is a special case of a turn, in which the direction of the protein backbone reverses and the flanking secondary structure elements interact. For example, a beta hairpin connects two hydrogen-bonded, antiparallel β-strands (a rather confusing name, since a β-hairpin may contain many types of turns – α, β, γ, etc.). Beta hairpins may be classified according to the number of residues that make up the turn - that is, that are not part of the flanking β-strands. If this number is X or Y (according to two different definitions of β sheets) the β hairpin is defined as X:Y. Beta turns at the loop ends of beta hairpins have a different distribution of types from the others; type I′ is commonest, followed by types II′, I and II.

[ "Protein secondary structure", "Amino acid", "Peptide", "Nuclear magnetic resonance", "Biochemistry" ]
Parent Topic
Child Topic
    No Parent Topic